scholarly journals ANNIHILATING IDEALS OF QUADRATIC FORMS OVER LOCAL AND GLOBAL FIELDS

2010 ◽  
Vol 06 (03) ◽  
pp. 603-624
Author(s):  
KLAAS-TIDO RÜHL

We study annihilating polynomials and annihilating ideals for elements of Witt rings for groups of exponent 2. With the help of these results and certain calculations involving the Clifford invariant, we are able to give full sets of generators for the annihilating ideal of both the isometry class and the equivalence class of an arbitrary quadratic form over a local field. By applying the Hasse–Minkowski theorem, we can then achieve the same for an arbitrary quadratic form over a global field.

2020 ◽  
Vol 102 (3) ◽  
pp. 374-386
Author(s):  
A.-H. NOKHODKAR

A system of quadratic forms is associated to every generalised quadratic form over a division algebra with involution of the first kind in characteristic two. It is shown that this system determines the isotropy behaviour and the isometry class of generalised quadratic forms. An application of this construction to the Witt index of generalised quadratic forms is also given.


Author(s):  
Bernhard M¨uhlherr ◽  
Holger P. Petersson ◽  
Richard M. Weiss

This chapter presents various results about quadratic forms over a field complete with respect to a discrete valuation. The discussion is based on the assumption that K is a field of arbitrary characteristic which is complete with respect to a discrete valuation ν‎ and uses the usual convention that ν‎(0) = infinity. The chapter starts with a notation regarding the ring of integers of K and the natural map from it to the residue field, followed by a number of propositions regarding an anisotropic quadratic space. These include an anisotropic quadratic space with residual quadratic spaces, an unramified quadratic space of finite dimension, unramified finite-dimensional anisotropic quadratic forms over K, unramified anisotropic quadratic forms and a bilinear form, and a round quadratic space over K. The chapter concludes with a theorem that there exists an anisotropic quadratic form over K, unique up to isometry, and is non-singular.


2020 ◽  
Vol 30 (1) ◽  
pp. 63-78
Author(s):  
P. Gladki ◽  
◽  
M. Marshall

Two fields are Witt equivalent if, roughly speaking, they have the same quadratic form theory. Formally, that is to say that their Witt rings of symmetric bilinear forms are isomorphic. This equivalence is well understood only in a few rather specific classes of fields. Two such classes, namely function fields over global fields and function fields of curves over local fields, were investigated by the authors in their earlier works [5] and [6]. In the present work, which can be viewed as a sequel to the earlier papers, we discuss the previously obtained results in the specific case of function fields of conic sections, and apply them to provide a few theorems of a somewhat quantitive flavour shedding some light on the question of numbers of Witt non-equivalent classes of such fields.


2019 ◽  
Vol 952 (10) ◽  
pp. 2-9
Author(s):  
Yu.M. Neiman ◽  
L.S. Sugaipova ◽  
V.V. Popadyev

As we know the spherical functions are traditionally used in geodesy for modeling the gravitational field of the Earth. But the gravitational field is not stationary either in space or in time (but the latter is beyond the scope of this article) and can change quite strongly in various directions. By its nature, the spherical functions do not fully display the local features of the field. With this in mind it is advisable to use spatially localized basis functions. So it is convenient to divide the region under consideration into segments with a nearly stationary field. The complexity of the field in each segment can be characterized by means of an anisotropic matrix resulting from the covariance analysis of the field. If we approach the modeling in this way there can arise a problem of poor coherence of local models on segments’ borders. To solve the above mentioned problem it is proposed in this article to use new basis functions with Mahalanobis metric instead of the usual Euclidean distance. The Mahalanobis metric and the quadratic form generalizing this metric enables us to take into account the structure of the field when determining the distance between the points and to make the modeling process continuous.


2007 ◽  
Vol 03 (04) ◽  
pp. 541-556 ◽  
Author(s):  
WAI KIU CHAN ◽  
A. G. EARNEST ◽  
MARIA INES ICAZA ◽  
JI YOUNG KIM

Let 𝔬 be the ring of integers in a number field. An integral quadratic form over 𝔬 is called regular if it represents all integers in 𝔬 that are represented by its genus. In [13,14] Watson proved that there are only finitely many inequivalent positive definite primitive integral regular ternary quadratic forms over ℤ. In this paper, we generalize Watson's result to totally positive regular ternary quadratic forms over [Formula: see text]. We also show that the same finiteness result holds for totally positive definite spinor regular ternary quadratic forms over [Formula: see text], and thus extends the corresponding finiteness results for spinor regular quadratic forms over ℤ obtained in [1,3].


2014 ◽  
Vol 57 (3) ◽  
pp. 579-590 ◽  
Author(s):  
STACY MARIE MUSGRAVE

AbstractThis work defines a new algebraic structure, to be called an alternative Clifford algebra associated to a given quadratic form. I explored its representations, particularly concentrating on connections to the well-understood octonion algebras. I finished by suggesting directions for future research.


2017 ◽  
Vol 26 (14) ◽  
pp. 1750102 ◽  
Author(s):  
José María Montesinos-Amilibia

An example of an integral ternary quadratic form [Formula: see text] such that its associated orbifold [Formula: see text] is a manifold is given. Hence, the title is proved.


2006 ◽  
Vol 13 (4) ◽  
pp. 687-691
Author(s):  
Guram Gogishvili

Abstract Let 𝑚 ∈ ℕ, 𝑓 be a positive definite, integral, primitive, quaternary quadratic form of the determinant 𝑑 and let ρ(𝑓,𝑚) be the corresponding singular series. When studying the best estimates for ρ(𝑓,𝑚) with respect to 𝑑 and 𝑚 we proved in [Gogishvili, Trudy Tbiliss. Univ. 346: 72–77, 2004] that where 𝑏(𝑘) is the product of distinct prime factors of 16𝑘 if 𝑘 ≠ 1 and 𝑏(𝑘) = 3 if 𝑘 = 1. The present paper proves a more precise estimate where 𝑑 = 𝑑0𝑑1, if 𝑝 > 2; 𝑕(2) ⩾ –4. The last estimate for ρ(𝑓,𝑚) as a general result for quaternary quadratic forms of the above-mentioned type is unimprovable in a certain sense.


1970 ◽  
Vol 22 (2) ◽  
pp. 297-307 ◽  
Author(s):  
Melvin Band

Let F be a local field with ring of integers and unique prime ideal (p). Suppose that V a finite-dimensional regular quadratic space over F, W and W′ are two isometric subspaces of V (i.e. τ: W → W′ is an isometry from W to W′). By the well-known Witt's Theorem, τ can always be extended to an isometry σ ∈ O(V).The integral analogue of this theorem has been solved over non-dyadic local fields by James and Rosenzweig [2], over the 2-adic fields by Trojan [4], and partially over the dyadics by Hsia [1], all for the special case that W is a line. In this paper we give necessary and sufficient conditions that two arbitrary dimensional subspaces W and W′ are integrally equivalent over non-dyadic local fields.


Sign in / Sign up

Export Citation Format

Share Document