Spinor representations of positive definite ternary quadratic forms
For a positive definite integral ternary quadratic form [Formula: see text], let [Formula: see text] be the number of representations of an integer [Formula: see text] by [Formula: see text]. The famous Minkowski–Siegel formula implies that if the class number of [Formula: see text] is one, then [Formula: see text] can be written as a constant multiple of a product of local densities which are easily computable. In this paper, we consider the case when the spinor genus of [Formula: see text] contains only one class. In this case the above also holds if [Formula: see text] is not contained in a set of finite number of square classes which are easily computable. By using this fact, we prove some extension of the recent results on both the representations of generalized Bell ternary forms and the representations of ternary quadratic forms with some congruence conditions.