One-Step Synthesis of Immobilized BiOCl Film with Excellent Adsorption Capacity for Dyes

NANO ◽  
2015 ◽  
Vol 10 (08) ◽  
pp. 1550119 ◽  
Author(s):  
Hongbin Chen ◽  
Wangmiao Fu ◽  
Xiang Yu ◽  
Yi Zhu ◽  
Hui Meng ◽  
...  

A facile one-step method was developed for the first time to fabricate BiOCl film on Cu substrate by simply dipping the Cu substrate in the mixed solution containing HCl, glycol, H2O2 and BiCl3. This method shows the advantages of a simple technique, uniform and controllable morphology, as well as easy mass production. The absorption capacity of BiOCl film was investigated by adsorption of Rhodamine B and Congo red (CR) and their maximum adsorption capacities were 1667[Formula: see text]mg[Formula: see text]g[Formula: see text] and 1429[Formula: see text]mg[Formula: see text]g[Formula: see text], respectively. The negative values of free energy and the positive values of enthalpy suggested that the adsorption were spontaneous and endothermic, respectively. Moreover, both adsorptions were matched with the pseudo-second-order equation. This film could be reused and the recycle rates for Rhodamine B and CR were still about 95% and 75% after five cycles, respectively. The adsorption mechanism revealed that hydrogen bond mainly accounted for the adsorption of dyes.

Polymers ◽  
2021 ◽  
Vol 13 (22) ◽  
pp. 3890
Author(s):  
Chenlu Jiao ◽  
Die Liu ◽  
Nana Wei ◽  
Jiannan Gao ◽  
Fan Fu ◽  
...  

Porous sustainable cellulose/gelatin/sepiolite gel beads were fabricated via an efficient ‘hydrophilic assembly–floating droplet’ two-step method to remove Congo red (CR) from wastewater. The beads comprised microcrystalline cellulose and gelatin, forming a dual network framework, and sepiolite, which acted as a functional component to reinforce the network. The as-prepared gel beads were characterized using FTIR, SEM, XRD, and TGA, with the results indicating a highly porous structure that was also thermally stable. A batch adsorption experiment for CR was performed and evaluated as a function of pH, sepiolite addition, contact time, temperature, and initial concentration. The kinetics and isotherm data obtained were in agreement with the pseudo-second-order kinetic model and the Langmuir isotherm, with a maximum monolayer capacity of 279.3 mg·g−1 for CR at 303 K. Moreover, thermodynamic analysis demonstrated the spontaneous and endothermic nature of the dye uptake. Importantly, even when subjected to five regeneration cycles, the gel beads retained 87% of their original adsorption value, suggesting their suitability as an efficient and reusable material for dye wastewater treatments.


2014 ◽  
Vol 2014 ◽  
pp. 1-12 ◽  
Author(s):  
Bayram Kizilkaya ◽  
A. Adem Tekınay

Removal of lead (II) from aqueous solutions was studied by using pretreated fish bones as natural, cost-effective, waste sorbents. The effect of pH, contact time, temperature, and metal concentration on the adsorption capacities of the adsorbent was investigated. The maximum adsorption capacity for Pb (II) was found to be 323 mg/g at optimum conditions. The experiments showed that when pH increased, an increase in the adsorbed amount of metal of the fish bones was observed. The kinetic results of adsorption obeyed a pseudo second-order model. Freundlich and Langmuir isotherm models were applied to experimental equilibrium data of Pb (II) adsorption and the value ofRLfor Pb (II) was found to be 0.906. The thermodynamic parameters related to the adsorption process such asEa,ΔG°,ΔH°, andΔS° were calculated andEa,ΔH°, andΔS° were found to be 7.06, 46.01 kJ mol−1, and 0.141 kJ mol−1K−1for Pb (III), respectively.ΔH° values (46.01 kJmol−1) showed that the adsorption mechanism was endothermic. Weber-Morris and Urano-Tachikawa diffusion models were also applied to the experimental equilibrium data. The fish bones were effectively used as sorbent for the removal of Pb (II) ions from aqueous solutions.


2017 ◽  
Vol 2017 ◽  
pp. 1-10 ◽  
Author(s):  
Jin Wang ◽  
Qiufang Yao ◽  
Chengmin Sheng ◽  
Chunde Jin ◽  
Qingfeng Sun

Via a one-step ultrasonication method, cellulose nanofibril/graphene oxide hybrid (GO-CNF) aerogel was successfully prepared. The as-prepared GO-CNF possessed interconnected 3D network microstructure based on GO nanosheets grown along CNF through hydrogen bonds. The aerogel exhibited superior adsorption capacity toward four kinds of antibiotics. The removal percentages (R%) of these antibiotics were 81.5%, 79.5%, 79.1%, and 73.9% for Doxycycline (DXC), Chlortetracycline (CTC), Oxytetracycline (OTC), and tetracycline (TC), respectively. Simultaneously, the adsorption isotherms were well fitted to Langmuir model and kinetics study implied that the adsorption process was attributed to pseudo-second-order model. The maximum theoretical adsorption capacities of GO-CNF were 469.7, 396.5, 386.5, and 343.8 mg·g−1 for DXC, CTC, OTC, and TC, respectively, calculated by the Langmuir isotherm models. After five cycles, importantly, the regenerated aerogels still could be used with little degradation of adsorption property. Consequently, the as-synthesized GO-CNF was a successful application of effective removal of antibiotics.


2021 ◽  
Vol 60 (1) ◽  
pp. 365-376
Author(s):  
Xiaoxing Zhang ◽  
Hui Liu ◽  
Jin Yang ◽  
Li Zhang ◽  
Binxia Cao ◽  
...  

Abstract Iron phosphate-modified pollen microspheres (pollen@FePO4) were prepared and applied as sorbents for the removal of heavy metals (Cd2+ and Pb2+) from the aqueous solution. Batch sorption studies were conducted to investigate the effects of solution pH, contact time, sorbent dosage, and metal concentration on the adsorption process. The sorption of Cd2+ and Pb2+ ions on pollen@FePO4 corresponds to the pseudo-second-order model and Langmuir isotherm, which is similar to the unmodified pollen. At pH 5.92, pollen@FePO4 offers maximum adsorption capacities of 4.623 and 61.35 mg·g−1 for Cd2+ and Pb2+, respectively. The faster sorption kinetics and higher adsorption capacities of Cd2+ and Pb2+ ions onto pollen@FePO4 than pollen indicates that it might be a promising material for the removal of heavy metal ions in aqueous solutions. The possible adsorption mechanism involves electrostatic and chemisorption for Cd2+ and mainly complexion for Pb2+.


2021 ◽  
Author(s):  
Chunlei Yang ◽  
Na Gao ◽  
Yazhou Liu ◽  
Hengzhi Zhao ◽  
Jing Jing ◽  
...  

We synthesized SiNPs by a one-step method and established, for the first time, a novel SiNP-based nanoprobe (denoted as SiNPs/OPD/HRP/GOx) for ratiometric fluorescence and visual detection of glucose in serum samples.


2017 ◽  
Vol 79 (7) ◽  
Author(s):  
Abdulganiyu Umar ◽  
Mohd Marsin Sanagi ◽  
Ahmedy Abu Naim ◽  
Wan Nazihah Wan Ibrahim ◽  
Aemi Syazwani Abdul Keyon ◽  
...  

In this work, polystyrene modified-chitin was evaluated for the first time as adsorbent for the removal of Orange G from aqueous solutions. Its absorption capacity was compared to that of chitin. BET and FESEM results showed that the polystyrene-modified chitin has higher surface area (12.47 m2/g) compared to chitin (4.92 m²/g). Batch adsorption experiments on the removal of Orange G from aqueous solutions were conducted. The results showed that the polystyrene-modified chitin has improved adsorption capacity compared to chitin. The maximum adsorption of orange G by chitin occurred at pH 2, while that of the polystyrene-modified chitin occurred at pH 6. At an initial concentration of 20 mg/L, the percentages of dye removal were 65.16% and 81.20% for raw chitin (RCH) and polystyrene-modified chitin (MCH), respectively. Kinetics studies for the adsorbents were conducted using pseudo-first-order and pseudo-second-order models. The pseudo-first-order model gives poor fittings for both adsorbents, with low coefficients of determination (R2). The pseudo-second-order model fits the experimental data well, with R2 close to unity. Langmuir and Freundlich models were used to interpret the adsorption isotherms. It was found that Langmuir isotherm conformed better than Freundlich model in the adsorption of selected dye on chitin and the polystyrene-modified chitin, with R2 nearly unity.


2015 ◽  
Vol 3 (1) ◽  
pp. 72-81 ◽  
Author(s):  
Ying Yang ◽  
Pengkai Qi ◽  
Yonghui Ding ◽  
Manfred F. Maitz ◽  
Zhilu Yang ◽  
...  

A one-step method to deposit a functional amine-rich coating in dopamine and hexamethylendiamine mixed solution through simple dip-coating of objects.


2021 ◽  

<p>An adsorbent was prepared from Mangosteen shell using sulphuric acid and sodium bicarbonate as modifiers. Bicarbonate treated mangosteen shell (BTMC) was characterized using FT- IR, SEM, EDAX and XRD data. The Freundlich adsorption isotherm model gives a good fit. The maximum adsorption capacities of BTMC were found to be 58.48 mg g-1 and 49.75 mg g-1 for Pb (II) and. Hg (II). Adsorption of Pb (II) and Hg (II) followed pseudo-second-order kinetics. The adsorption mechanism was explained using the Weber and Morris's intra-particular diffusion process. Batch mode studies with synthetic wastewater suggest that BTMC can be efficiently used in wastewater treatment.</p>


Processes ◽  
2021 ◽  
Vol 9 (10) ◽  
pp. 1718
Author(s):  
Pan Luo ◽  
Song Lyu ◽  
Bowen Zhang ◽  
Hui Wang ◽  
Yanping Zhou ◽  
...  

As the problems of electromagnetic pollution and interference are becoming increasingly serious, the development of electromagnetic absorption materials with a high absorption capacity and broad absorption bandwidth are stringently needed. In this work, an N-doped 2D carbon/Ni complex is synthesized through direct microwave irradiation on a mixed solution of nickel nitrate, urea, and agarose under N2. The electromagnetic absorption performance can be tuned by controlling the Ni content. Specifically, minimum reflection loss values (RLmin) of −65.5 dB at 15.8 GHz with an effective absorption bandwidth (EAB) of 4.2 GHz at a sample thickness of 1.47 mm, and −55.4 dB at 11.8 GHz with an EAB of 3 GHz at a sample thickness of 1.92 mm can be obtained. The outstanding performance of electromagnetic absorption is attributed to the multiple polarization relaxation processes and the synergistic effect between 2D carbon sheets and Ni particles.


Author(s):  
Sara Basile ◽  
Essyrose Mathew ◽  
Ida Genta ◽  
Bice Conti ◽  
Rossella Dorati ◽  
...  

Abstract3D printing has provided a new prospective in the manufacturing of personalized medical implants, including fistulas for haemodialysis (HD). In the current study, an optimized fused modelling deposition (FDM) 3D printing method has been validated, for the first time, to obtain cylindrical shaped fistulas. Printing parameters were evaluated for the manufacturing of fistulas using blank and 0.25% curcumin-loaded filaments that were produced by hot melt extrusion (HME). Four different fistula types have been designed and characterized using a variety of physicochemical characterization methods. Each design was printed three times to demonstrate printing process accuracy considering outer and inner diameter, wall thickness, width, and length. A thermoplastic polyurethane (TPU) biocompatible elastomer was chosen, showing good mechanical properties with a high elastic modulus and maximum elongation, as well as stability at high temperatures with less than 0.8% of degradation at the range between 25 and 250 °C. Curcumin release profile has been evaluated in a saline buffer, obtaining a low release (12%) and demonstrating drug could continue release for a longer period, and for as long as grafts should remain in patient body. Possibility to produce drug-loaded grafts using one-step method as well as 3D printing process and TPU filaments containing curcumin printability has been demonstrated. Graphical abstract


Sign in / Sign up

Export Citation Format

Share Document