Hilbert bundles with ends

2021 ◽  
pp. 1-32
Author(s):  
Tsuyoshi Kato ◽  
Daisuke Kishimoto ◽  
Mitsunobu Tsutaya

Given a countable metric space, we can consider its end. Then a basis of a Hilbert space indexed by the metric space defines an end of the Hilbert space, which is a new notion and different from an end as a metric space. Such an indexed basis also defines unitary operators of finite propagation, and these operators preserve an end of a Hilbert space. Then, we can define a Hilbert bundle with end, which lightens up new structures of Hilbert bundles. In a special case, we can define characteristic classes of Hilbert bundles with ends, which are new invariants of Hilbert bundles. We show Hilbert bundles with ends appear in natural contexts. First, we generalize the pushforward of a vector bundle along a finite covering to an infinite covering, which is a Hilbert bundle with end under a mild condition. Then we compute characteristic classes of some pushforwards along infinite coverings. Next, we will show the spectral decompositions of nice differential operators give rise to Hilbert bundles with ends, which elucidate new features of spectral decompositions. The spectral decompositions we will consider are the Fourier transform and the harmonic oscillators.

1970 ◽  
Vol 25 (5) ◽  
pp. 575-586
Author(s):  
H. Stumpf

Functional quantum theory of free Fermi fields is treated for the special case of a free Dirac field. All other cases run on the same pattern. Starting with the Schwinger functionals of the free Dirac field, functional equations and corresponding many particle functionals can be derived. To establish a functional quantum theory, a physical interpretation of the functionals is required. It is provided by a mapping of the physical Hilbert space into an appropriate functional Hilbert space, which is introduced here. Mathematical details, especially the problems connected with anticommuting functional sources are treated in the appendices.


Symmetry ◽  
2021 ◽  
Vol 13 (6) ◽  
pp. 1060
Author(s):  
Enrico Celeghini ◽  
Manuel Gadella ◽  
Mariano A. del del Olmo

We introduce a multi-parameter family of bases in the Hilbert space L2(R) that are associated to a set of Hermite functions, which also serve as a basis for L2(R). The Hermite functions are eigenfunctions of the Fourier transform, a property that is, in some sense, shared by these “generalized Hermite functions”. The construction of these new bases is grounded on some symmetry properties of the real line under translations, dilations and reflexions as well as certain properties of the Fourier transform. We show how these generalized Hermite functions are transformed under the unitary representations of a series of groups, including the Weyl–Heisenberg group and some of their extensions.


2021 ◽  
Vol 13 (2) ◽  
pp. 326-339
Author(s):  
H.H. Bang ◽  
V.N. Huy

In this paper, we investigate the behavior of the sequence of $L^\Phi$-norm of functions, which are generated by differential and integral operators through their spectra (the support of the Fourier transform of a function $f$ is called its spectrum and denoted by sp$(f)$). With $Q$ being a polynomial, we introduce the notion of $Q$-primitives, which will return to the notion of primitives if ${Q}(x)= x$, and study the behavior of the sequence of norm of $Q$-primitives of functions in Orlicz space $L^\Phi(\mathbb R^n)$. We have the following main result: let $\Phi $ be an arbitrary Young function, ${Q}({\bf x} )$ be a polynomial and $(\mathcal{Q}^mf)_{m=0}^\infty \subset L^\Phi(\mathbb R^n)$ satisfies $\mathcal{Q}^0f=f, {Q}(D)\mathcal{Q}^{m+1}f=\mathcal{Q}^mf$ for $m\in\mathbb{Z}_+$. Assume that sp$(f)$ is compact and $sp(\mathcal{Q}^{m}f)= sp(f)$ for all $m\in \mathbb{Z}_+.$ Then $$ \lim\limits_{m\to \infty } \|\mathcal{Q}^m f\|_{\Phi}^{1/m}= \sup\limits_{{\bf x} \in sp(f)} \bigl|1/ {Q}({\bf x}) \bigl|. $$ The corresponding results for functions generated by differential operators and integral operators are also given.


2019 ◽  
Vol 10 (4) ◽  
pp. 377-394
Author(s):  
Anirudha Poria ◽  
Jitendriya Swain

AbstractLet {\mathbb{H}} be a separable Hilbert space. In this paper, we establish a generalization of Walnut’s representation and Janssen’s representation of the {\mathbb{H}}-valued Gabor frame operator on {\mathbb{H}}-valued weighted amalgam spaces {W_{\mathbb{H}}(L^{p},L^{q}_{v})}, {1\leq p,q\leq\infty}. Also, we show that the frame operator is invertible on {W_{\mathbb{H}}(L^{p},L^{q}_{v})}, {1\leq p,q\leq\infty}, if the window function is in the Wiener amalgam space {W_{\mathbb{H}}(L^{\infty},L^{1}_{w})}. Further, we obtain the Walnut representation and invertibility of the frame operator corresponding to Gabor superframes and multi-window Gabor frames on {W_{\mathbb{H}}(L^{p},L^{q}_{v})}, {1\leq p,q\leq\infty}, as a special case by choosing the appropriate Hilbert space {\mathbb{H}}.


1958 ◽  
Vol 10 ◽  
pp. 431-446 ◽  
Author(s):  
Fred Brauer

Let L and M be linear ordinary differential operators defined on an interval I, not necessarily bounded, of the real line. We wish to consider the expansion of arbitrary functions in eigenfunctions of the differential equation Lu = λMu on I. The case where M is the identity operator and L has a self-adjoint realization as an operator in the Hilbert space L 2(I) has been treated in various ways by several authors; an extensive bibliography may be found in (4) or (8).


2019 ◽  
Vol 2019 ◽  
pp. 1-12
Author(s):  
Qinglan Bao ◽  
Xiaoling Hao ◽  
Jiong Sun

This paper is concerned with the characterization of all self-adjoint domains associated with two-interval even order singular C-symmetric differential operators in terms of boundary conditions. The previously known characterizations of Lagrange symmetric differential operators are a special case of this one.


1969 ◽  
Vol 21 ◽  
pp. 1178-1181 ◽  
Author(s):  
Chandler Davis ◽  
Heydar Radjavi ◽  
Peter Rosenthal

If is a collection of operators on the complex Hilbert space , then the lattice of all subspaces of which are invariant under every operator in is denoted by Lat . An algebra of operators on is defined (3; 4) to be reflexive if for every operator B on the inclusion Lat ⊆ Lat B implies .Arveson (1) has proved the following theorem. (The abbreviation “m.a.s.a.” stands for “maximal abelian self-adjoint algebra”.)ARVESON's THEOREM. Ifis a weakly closed algebra which contains an m.a.s.a.y and if Lat, then is the algebra of all operators on .A generalization of Arveson's Theorem was given in (3). Another generalization is Theorem 2 below, an equivalent form of which is Corollary 3. This theorem was motivated by the following very elementary proof of a special case of Arveson's Theorem.


2002 ◽  
Vol 45 (1) ◽  
pp. 60-70 ◽  
Author(s):  
A. N. Dranishnikov ◽  
G. Gong ◽  
V. Lafforgue ◽  
G. Yu

AbstractGromov introduced the concept of uniform embedding into Hilbert space and asked if every separable metric space admits a uniform embedding into Hilbert space. In this paper, we study uniform embedding into Hilbert space and answer Gromov’s question negatively.


1948 ◽  
Vol 8 (2) ◽  
pp. 76-86 ◽  
Author(s):  
H. W. Turnbull

The result obtained by Lars Gårding, who uses the Cayley operator upon a symmetric matrix, is of considerable interest. The operator Ω = |∂/∂xij|, which is obtained on replacing the n2 elements of a determinant |xij by their corresponding differential operators and forming the corresponding n-rowed determinant, is fundamental in the classical invariant theory. After the initial discovery in 1845 by Cayley further progress was made forty years later by Capelli who considered the minors and linear combinations (polarized forms) of minors of the same order belonging to the whole determinant Ω: but in all this investigation the n2 elements xij were regarded as independent variables. The apparently special case, undertaken by Gårding when xij = xji and the matrix [xij] is symmetric, is essentially a new departure: and it is significant to have learnt from Professor A. C. Aitken in March this year 1946, that he too was finding the symmetrical matrix operator [∂/∂xij] of importance and has already written on the matter.


2015 ◽  
Vol 93 (1) ◽  
pp. 146-151 ◽  
Author(s):  
LEONID V. KOVALEV

Finite subset spaces of a metric space $X$ form a nested sequence under natural isometric embeddings $X=X(1)\subset X(2)\subset \cdots \,$. We prove that this sequence admits Lipschitz retractions $X(n)\rightarrow X(n-1)$ when $X$ is a Hilbert space.


Sign in / Sign up

Export Citation Format

Share Document