Construction of non-isomorphic covering arrays

2016 ◽  
Vol 08 (02) ◽  
pp. 1650033 ◽  
Author(s):  
Jose Torres-Jimenez ◽  
Idelfonso Izquierdo-Marquez

A covering array CA([Formula: see text]) of strength [Formula: see text] and order [Formula: see text] is an [Formula: see text] array over [Formula: see text] with the property that every [Formula: see text] subarray covers all members of [Formula: see text] at least once. When the value of [Formula: see text] is the minimum possible it is named as the covering array number (CAN) i.e. [Formula: see text]. Two CAs are isomorphic if one of them can be derived from the other by a combination of a row permutation, a column permutation, and a symbol permutation in a subset of columns. Isomorphic CAs have equivalent coverage properties, and can be considered as the same CA; the truly distinct CAs are those which are non-isomorphic among them. An interesting and hard problem is to construct all the non-isomorphic CAs that exist for a particular combination of the parameters [Formula: see text], [Formula: see text], [Formula: see text] and [Formula: see text]. We constructed the non-isomorphic CAs for 70 combinations of values of the parameters [Formula: see text], [Formula: see text], [Formula: see text] and [Formula: see text], the results allow us to determine CAN(3,13,2) =16, CAN(3,14,2) =16, CAN(3,15,2) =17, CAN(3,16,2) =17, and CAN(2,10,3) =14. The exact lower bound for these covering arrays numbers had not been determined before either by computational search or by algebraic analysis.

2018 ◽  
Vol 10 (01) ◽  
pp. 1850011 ◽  
Author(s):  
Idelfonso Izquierdo-Marquez ◽  
Jose Torres-Jimenez

A covering array [Formula: see text] is an [Formula: see text] array such that every [Formula: see text] subarray covers at least once each [Formula: see text]-tuple from [Formula: see text] symbols. For given [Formula: see text], [Formula: see text], and [Formula: see text], the minimum number of rows for which exists a CA is denoted by [Formula: see text] (CAN stands for Covering Array Number) and the corresponding CA is optimal. Optimal covering arrays have been determined algebraically for a small subset of cases; but another alternative to find CANs is the use of computational search. The present work introduces a new orderly algorithm to construct non-isomorphic covering arrays; this algorithm is an improvement of a previously reported algorithm for the same purpose. The construction of non-isomorphic covering arrays is used to prove the nonexistence of certain covering arrays whose nonexistence implies the optimality of other covering arrays. From the computational results obtained, the following CANs were established: [Formula: see text] for [Formula: see text], [Formula: see text], and [Formula: see text]. In addition, the new result [Formula: see text], and the already known existence of [Formula: see text], imply [Formula: see text].


2021 ◽  
Vol 15 (5) ◽  
pp. 1-32
Author(s):  
Quang-huy Duong ◽  
Heri Ramampiaro ◽  
Kjetil Nørvåg ◽  
Thu-lan Dam

Dense subregion (subgraph & subtensor) detection is a well-studied area, with a wide range of applications, and numerous efficient approaches and algorithms have been proposed. Approximation approaches are commonly used for detecting dense subregions due to the complexity of the exact methods. Existing algorithms are generally efficient for dense subtensor and subgraph detection, and can perform well in many applications. However, most of the existing works utilize the state-or-the-art greedy 2-approximation algorithm to capably provide solutions with a loose theoretical density guarantee. The main drawback of most of these algorithms is that they can estimate only one subtensor, or subgraph, at a time, with a low guarantee on its density. While some methods can, on the other hand, estimate multiple subtensors, they can give a guarantee on the density with respect to the input tensor for the first estimated subsensor only. We address these drawbacks by providing both theoretical and practical solution for estimating multiple dense subtensors in tensor data and giving a higher lower bound of the density. In particular, we guarantee and prove a higher bound of the lower-bound density of the estimated subgraph and subtensors. We also propose a novel approach to show that there are multiple dense subtensors with a guarantee on its density that is greater than the lower bound used in the state-of-the-art algorithms. We evaluate our approach with extensive experiments on several real-world datasets, which demonstrates its efficiency and feasibility.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
R. A. Abdelghany ◽  
A.-B. A. Mohamed ◽  
M. Tammam ◽  
Watson Kuo ◽  
H. Eleuch

AbstractWe formulate the tripartite entropic uncertainty relation and predict its lower bound in a three-qubit Heisenberg XXZ spin chain when measuring an arbitrary pair of incompatible observables on one qubit while the other two are served as quantum memories. Our study reveals that the entanglement between the nearest neighbors plays an important role in reducing the uncertainty in measurement outcomes. In addition we have shown that the Dolatkhah’s lower bound (Phys Rev A 102(5):052227, 2020) is tighter than that of Ming (Phys Rev A 102(01):012206, 2020) and their dynamics under phase decoherence depends on the choice of the observable pair. In the absence of phase decoherence, Ming’s lower bound is time-invariant regardless the chosen observable pair, while Dolatkhah’s lower bound is perfectly identical with the tripartite uncertainty with a specific choice of pair.


1970 ◽  
Vol 37 (2) ◽  
pp. 267-270 ◽  
Author(s):  
D. Pnueli

A method is presented to obtain both upper and lower bound to eigenvalues when a variational formulation of the problem exists. The method consists of a systematic shift in the weight function. A detailed procedure is offered for one-dimensional problems, which makes improvement of the bounds possible, and which involves the same order of detailed computation as the Rayleigh-Ritz method. The main contribution of this method is that it yields the “other bound;” i.e., the one which cannot be obtained by the Rayleigh-Ritz method.


2021 ◽  
Vol 12 (3) ◽  
pp. 150-156
Author(s):  
A. V. Galatenko ◽  
◽  
V. A. Kuzovikhina ◽  

We propose an automata model of computer system security. A system is represented by a finite automaton with states partitioned into two subsets: "secure" and "insecure". System functioning is secure if the number of consecutive insecure states is not greater than some nonnegative integer k. This definition allows one to formally reflect responsiveness to security breaches. The number of all input sequences that preserve security for the given value of k is referred to as a k-secure language. We prove that if a language is k-secure for some natural and automaton V, then it is also k-secure for any 0 < k < k and some automaton V = V (k). Reduction of the value of k is performed at the cost of amplification of the number of states. On the other hand, for any non-negative integer k there exists a k-secure language that is not k"-secure for any natural k" > k. The problem of reconstruction of a k-secure language using a conditional experiment is split into two subcases. If the cardinality of an input alphabet is bound by some constant, then the order of Shannon function of experiment complexity is the same for al k; otherwise there emerges a lower bound of the order nk.


Author(s):  
Jose Torres-Jimenez ◽  
Himer Avila-George ◽  
Ezra Federico Parra-González

Software testing is an essential activity to ensure the quality of software systems. Combinatorial testing is a method that facilitates the software testing process; it is based on an empirical evidence where almost all faults in a software component are due to the interaction of very few parameters. The test generation problem for combinatorial testing can be represented as the construction of a matrix that has certain properties; typically this matrix is a covering array. Covering arrays have a small number of tests, in comparison with an exhaustive approach, and provide a level of interaction coverage among the parameters involved. This paper presents a repository that contains binary covering arrays involving many levels of interaction. Also, it discusses the importance of covering array repositories in the construction of better covering arrays. In most of the cases, the size of the covering arrays included in the repository reported here are the best upper bounds known, moreover, the files containing the matrices of these covering arrays are available to be downloaded. The final purpose of our Binary Covering Arrays Repository (BCAR) is to provide software testing practitioners the best-known binary test-suites.


10.37236/4656 ◽  
2015 ◽  
Vol 22 (1) ◽  
Author(s):  
Mark Lewko
Keyword(s):  

Let $D(n)$ denote the cardinality of the largest subset of the set $\{1,2,\ldots,n\}$ such that the difference of no pair of distinct elements is a square. A well-known theorem of Furstenberg and Sárközy states that $D(n)=o(n)$. In the other direction, Ruzsa has proven that $D(n) \gtrsim n^{\gamma}$ for $\gamma = \frac{1}{2}\left( 1 + \frac{\log 7}{\log 65} \right) \approx 0.733077$. We improve this to $\gamma = \frac{1}{2}\left( 1 + \frac{\log 12}{\log 205} \right)  \approx 0.733412$.


1995 ◽  
Vol 05 (04) ◽  
pp. 635-646 ◽  
Author(s):  
MICHAEL A. PALIS ◽  
JING-CHIOU LIOU ◽  
SANGUTHEVAR RAJASEKARAN ◽  
SUNIL SHENDE ◽  
DAVID S.L. WEI

The scheduling problem for dynamic tree-structured task graphs is studied and is shown to be inherently more difficult than the static case. It is shown that any online scheduling algorithm, deterministic or randomized, has competitive ratio Ω((1/g)/ log d(1/g)) for trees with granularity g and degree at most d. On the other hand, it is known that static trees with arbitrary granularity can be scheduled to within twice the optimal schedule. It is also shown that the lower bound is tight: there is a deterministic online tree scheduling algorithm that has competitive ratio O((1/g)/ log d(1/g)). Thus, randomization does not help.


2007 ◽  
Vol 22 (35) ◽  
pp. 2675-2687 ◽  
Author(s):  
LUIS F. BARRAGÁN-GIL ◽  
ABEL CAMACHO

In this work the conditions appearing in the so-called WKB approximation formalism of quantum mechanics are analyzed. It is shown that, in general, a careful definition of an approximation method requires the introduction of two length parameters, one of them always considered in the textbooks on quantum mechanics, whereas the other is usually neglected. Afterwards we define a particular family of potentials and prove, resorting to the aforementioned length parameters, that we may find an energy which is a lower bound to the ground energy of the system. The idea is applied to the case of a harmonic oscillator and also to a particle freely falling in a homogeneous gravitational field, and in both cases the consistency of our method is corroborated. This approach, together with the so-called Rayleigh–Ritz formalism, allows us to define an energy interval in which the ground energy of any potential, belonging to our family, must lie.


Sign in / Sign up

Export Citation Format

Share Document