On the metric dimension and diameter of circulant graphs with three jumps

2018 ◽  
Vol 10 (01) ◽  
pp. 1850008
Author(s):  
Muhammad Imran ◽  
A. Q. Baig ◽  
Saima Rashid ◽  
Andrea Semaničová-Feňovčíková

Let [Formula: see text] be a connected graph and [Formula: see text] be the distance between the vertices [Formula: see text] and [Formula: see text] in [Formula: see text]. The diameter of [Formula: see text] is defined as [Formula: see text] and is denoted by [Formula: see text]. A subset of vertices [Formula: see text] is called a resolving set for [Formula: see text] if for every two distinct vertices [Formula: see text], there is a vertex [Formula: see text], [Formula: see text], such that [Formula: see text]. A resolving set containing the minimum number of vertices is called a metric basis for [Formula: see text] and the number of vertices in a metric basis is its metric dimension, denoted by [Formula: see text]. Metric dimension is a generalization of affine dimension to arbitrary metric spaces (provided a resolving set exists). Let [Formula: see text] be a family of connected graphs [Formula: see text] depending on [Formula: see text] as follows: the order [Formula: see text] and [Formula: see text]. If there exists a constant [Formula: see text] such that [Formula: see text] for every [Formula: see text] then we shall say that [Formula: see text] has bounded metric dimension, otherwise [Formula: see text] has unbounded metric dimension. If all graphs in [Formula: see text] have the same metric dimension, then [Formula: see text] is called a family of graphs with constant metric dimension. In this paper, we study the metric properties of an infinite class of circulant graphs with three generators denoted by [Formula: see text] for any positive integer [Formula: see text] and when [Formula: see text]. We compute the diameter and determine the exact value of the metric dimension of these circulant graphs.

2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Zafar Hussain ◽  
Mobeen Munir ◽  
Ashfaq Ahmad ◽  
Maqbool Chaudhary ◽  
Junaid Alam Khan ◽  
...  

AbstractResolving set and metric basis has become an integral part in combinatorial chemistry and molecular topology. It has a lot of applications in computer, chemistry, pharmacy and mathematical disciplines. A subset S of the vertex set V of a connected graph G resolves G if all vertices of G have different representations with respect to S. A metric basis for G is a resolving set having minimum cardinal number and this cardinal number is called the metric dimension of G. In present work, we find a metric basis and also metric dimension of 1-pentagonal carbon nanocones. We conclude that only three vertices are minimal requirement for the unique identification of all vertices in this network.


Symmetry ◽  
2018 ◽  
Vol 10 (8) ◽  
pp. 300 ◽  
Author(s):  
Zafar Hussain ◽  
Mobeen Munir ◽  
Maqbool Chaudhary ◽  
Shin Kang

Concepts of resolving set and metric basis has enjoyed a lot of success because of multi-purpose applications both in computer and mathematical sciences. For a connected graph G(V,E) a subset W of V(G) is a resolving set for G if every two vertices of G have distinct representations with respect to W. A resolving set of minimum cardinality is called a metric basis for graph G and this minimum cardinality is known as metric dimension of G. Boron nanotubes with different lattice structures, radii and chirality’s have attracted attention due to their transport properties, electronic structure and structural stability. In the present article, we compute the metric dimension and metric basis of 2D lattices of alpha-boron nanotubes.


2021 ◽  
Vol 9 ◽  
Author(s):  
Sunny Kumar Sharma ◽  
Hassan Raza ◽  
Vijay Kumar Bhat

Minimum resolving sets (edge or vertex) have become an integral part of molecular topology and combinatorial chemistry. Resolving sets for a specific network provide crucial information required for the identification of each item contained in the network, uniquely. The distance between an edge e = cz and a vertex u is defined by d(e, u) = min{d(c, u), d(z, u)}. If d(e1, u) ≠ d(e2, u), then we say that the vertex u resolves (distinguishes) two edges e1 and e2 in a connected graph G. A subset of vertices RE in G is said to be an edge resolving set for G, if for every two distinct edges e1 and e2 in G we have d(e1, u) ≠ d(e2, u) for at least one vertex u ∈ RE. An edge metric basis for G is an edge resolving set with minimum cardinality and this cardinality is called the edge metric dimension edim(G) of G. In this article, we determine the edge metric dimension of one-pentagonal carbon nanocone (1-PCNC). We also show that the edge resolving set for 1-PCNC is independent.


Mathematics ◽  
2022 ◽  
Vol 10 (1) ◽  
pp. 124
Author(s):  
Laxman Saha ◽  
Rupen Lama ◽  
Kalishankar Tiwary ◽  
Kinkar Chandra Das ◽  
Yilun Shang

Let G be a connected graph with vertex set V(G) and d(u,v) be the distance between the vertices u and v. A set of vertices S={s1,s2,…,sk}⊂V(G) is called a resolving set for G if, for any two distinct vertices u,v∈V(G), there is a vertex si∈S such that d(u,si)≠d(v,si). A resolving set S for G is fault-tolerant if S\{x} is also a resolving set, for each x in S, and the fault-tolerant metric dimension of G, denoted by β′(G), is the minimum cardinality of such a set. The paper of Basak et al. on fault-tolerant metric dimension of circulant graphs Cn(1,2,3) has determined the exact value of β′(Cn(1,2,3)). In this article, we extend the results of Basak et al. to the graph Cn(1,2,3,4) and obtain the exact value of β′(Cn(1,2,3,4)) for all n≥22.


2020 ◽  
Vol 28 (3) ◽  
pp. 15-37
Author(s):  
Muhammad Ahsan ◽  
Zohaib Zahid ◽  
Sohail Zafar

AbstractLet G = (V (G), E(G)) be a connected graph and x, y ∈ V (G), d(x, y) = min{ length of x − y path } and for e ∈ E(G), d(x, e) = min{d(x, a), d(x, b)}, where e = ab. A vertex x distinguishes two edges e1 and e2, if d(e1, x) ≠ d(e2, x). Let WE = {w1, w2, . . ., wk} be an ordered set in V (G) and let e ∈ E(G). The representation r(e | WE) of e with respect to WE is the k-tuple (d(e, w1), d(e, w2), . . ., d(e, wk)). If distinct edges of G have distinct representation with respect to WE, then WE is called an edge metric generator for G. An edge metric generator of minimum cardinality is an edge metric basis for G, and its cardinality is called edge metric dimension of G, denoted by edim(G). The circulant graph Cn(1, m) has vertex set {v1, v2, . . ., vn} and edge set {vivi+1 : 1 ≤ i ≤ n−1}∪{vnv1}∪{vivi+m : 1 ≤ i ≤ n−m}∪{vn−m+ivi : 1 ≤ i ≤ m}. In this paper, it is shown that the edge metric dimension of circulant graphs Cn(1, 2) and Cn(1, 3) is constant.


2021 ◽  
Vol 53 (1) ◽  
pp. 118-133
Author(s):  
Badekara Sooryanarayana ◽  
Suma Agani Shanmukha

A subset  of vertices of a simple connected graph is a neighborhood set (n-set) of  G if G is the union of subgraphs of G induced by the closed neighbors of elements in S. Further, a set S is a resolving set of G if for each pair of distinct vertices x,y of G, there is a vertex s∈ S such that d(s,x)≠d(s,y). An n-set that serves as a resolving set for G is called an nr-set of G. The nr-set with least cardinality is called an nr-metric basis of G and its cardinality is called the neighborhood metric dimension of graph G. In this paper, we characterize graphs of neighborhood metric dimension two.


2021 ◽  
Vol 14 (3) ◽  
pp. 773-782
Author(s):  
Jean Mansanadez Cabaro ◽  
Helen Rara

Let G be a connected graph. An ordered set of vertices {v1, ..., vl} is a 2-resolving set in G if, for any distinct vertices u, w ∈ V (G), the lists of distances (dG(u, v1), ..., dG(u, vl)) and (dG(w, v1), ..., dG(w, vl)) differ in at least 2 positions. If G has a 2-resolving set, we denote the least size of a 2-resolving set by dim2(G), the 2-metric dimension of G. A 2-resolving set of size dim2(G) is called a 2-metric basis for G. This study deals with the concept of 2-resolving set of a graph. It  characterizes the 2-resolving set in the join and corona of graphs and determine theexact values of the 2-metric dimension of these graphs.


2017 ◽  
Vol 14 (1) ◽  
pp. 354-358 ◽  
Author(s):  
Sathish Krishnan ◽  
Bharati Rajan ◽  
Muhammad Imran

Let G(V, E) be a connected graph. A vertex w strongly resolves a pair of vertices u,v in V if there exists some shortestu–w path containing V or some shortest v–w path containing u. A set w ⊂ V of vertices is called a strong resolving set for G if every pair of vertices of V\W is strongly resolved by some vertex of w . A strong resolving set of minimum cardinality is called a strong metric basis and this cardinality is called the strong metric dimension of G. The strong metric dimension problem is to find a strong metric basis in a graph. In this paper we investigate the strong metric dimension problem for certain nanostructures.


2015 ◽  
Vol 31 (2) ◽  
pp. 261-268
Author(s):  
JUAN A. RODRIGUEZ-VELAZQUEZ ◽  
◽  
DOROTA KUZIAK ◽  
ISMAEL G. YERO ◽  
JOSE M. SIGARRETA ◽  
...  

For an ordered subset S = {s1, s2, . . . sk} of vertices in a connected graph G, the metric representation of a vertex u with respect to the set S is the k-vector r(u|S) = (dG(v, s1), dG(v, s2), . . . , dG(v, sk)), where dG(x, y) represents the distance between the vertices x and y. The set S is a metric generator for G if every two different vertices of G have distinct metric representations with respect to S. A minimum metric generator is called a metric basis for G and its cardinality, dim(G), the metric dimension of G. It is well known that the problem of finding the metric dimension of a graph is NP-Hard. In this paper we obtain closed formulae and tight bounds for the metric dimension of strong product graphs.


2019 ◽  
Vol 11 (2) ◽  
pp. 418-421
Author(s):  
B.S. Ponomarchuk

Let $(X,d)$ be a metric space. A non-empty subset $A$ of the set $X$ is called resolving set of the metric space $(X,d)$ if for two arbitrary not equal points $u,v$ from $X$ there exists an element $a$ from $A$, such that $d(u,a) \neq d(v,a)$. The smallest of cardinalities of resolving subsets of the set $X$ is called the metric dimension $md(X)$ of the metric space $(X,d)$. In general, finding the metric dimension is an NP-hard problem. In this paper, metric dimension for metric transform and wreath product of metric spaces are provided. It is shown that the metric dimension of an arbitrary metric space is equal to the metric dimension of its metric transform.


Sign in / Sign up

Export Citation Format

Share Document