scholarly journals The metric dimension of strong product graphs

2015 ◽  
Vol 31 (2) ◽  
pp. 261-268
Author(s):  
JUAN A. RODRIGUEZ-VELAZQUEZ ◽  
◽  
DOROTA KUZIAK ◽  
ISMAEL G. YERO ◽  
JOSE M. SIGARRETA ◽  
...  

For an ordered subset S = {s1, s2, . . . sk} of vertices in a connected graph G, the metric representation of a vertex u with respect to the set S is the k-vector r(u|S) = (dG(v, s1), dG(v, s2), . . . , dG(v, sk)), where dG(x, y) represents the distance between the vertices x and y. The set S is a metric generator for G if every two different vertices of G have distinct metric representations with respect to S. A minimum metric generator is called a metric basis for G and its cardinality, dim(G), the metric dimension of G. It is well known that the problem of finding the metric dimension of a graph is NP-Hard. In this paper we obtain closed formulae and tight bounds for the metric dimension of strong product graphs.

2015 ◽  
Vol 13 (1) ◽  
Author(s):  
Dorota Kuziak ◽  
Ismael G. Yero ◽  
Juan A. Rodríguez-Velázquez

AbstractLet G be a connected graph. A vertex w ∈ V.G/ strongly resolves two vertices u,v ∈ V.G/ if there exists some shortest u-w path containing v or some shortest v-w path containing u. A set S of vertices is a strong resolving set for G if every pair of vertices of G is strongly resolved by some vertex of S. The smallest cardinality of a strong resolving set for G is called the strong metric dimension of G. It is well known that the problem of computing this invariant is NP-hard. In this paper we study the problem of finding exact values or sharp bounds for the strong metric dimension of strong product graphs and express these in terms of invariants of the factor graphs.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Zafar Hussain ◽  
Mobeen Munir ◽  
Ashfaq Ahmad ◽  
Maqbool Chaudhary ◽  
Junaid Alam Khan ◽  
...  

AbstractResolving set and metric basis has become an integral part in combinatorial chemistry and molecular topology. It has a lot of applications in computer, chemistry, pharmacy and mathematical disciplines. A subset S of the vertex set V of a connected graph G resolves G if all vertices of G have different representations with respect to S. A metric basis for G is a resolving set having minimum cardinal number and this cardinal number is called the metric dimension of G. In present work, we find a metric basis and also metric dimension of 1-pentagonal carbon nanocones. We conclude that only three vertices are minimal requirement for the unique identification of all vertices in this network.


2018 ◽  
Vol 10 (01) ◽  
pp. 1850008
Author(s):  
Muhammad Imran ◽  
A. Q. Baig ◽  
Saima Rashid ◽  
Andrea Semaničová-Feňovčíková

Let [Formula: see text] be a connected graph and [Formula: see text] be the distance between the vertices [Formula: see text] and [Formula: see text] in [Formula: see text]. The diameter of [Formula: see text] is defined as [Formula: see text] and is denoted by [Formula: see text]. A subset of vertices [Formula: see text] is called a resolving set for [Formula: see text] if for every two distinct vertices [Formula: see text], there is a vertex [Formula: see text], [Formula: see text], such that [Formula: see text]. A resolving set containing the minimum number of vertices is called a metric basis for [Formula: see text] and the number of vertices in a metric basis is its metric dimension, denoted by [Formula: see text]. Metric dimension is a generalization of affine dimension to arbitrary metric spaces (provided a resolving set exists). Let [Formula: see text] be a family of connected graphs [Formula: see text] depending on [Formula: see text] as follows: the order [Formula: see text] and [Formula: see text]. If there exists a constant [Formula: see text] such that [Formula: see text] for every [Formula: see text] then we shall say that [Formula: see text] has bounded metric dimension, otherwise [Formula: see text] has unbounded metric dimension. If all graphs in [Formula: see text] have the same metric dimension, then [Formula: see text] is called a family of graphs with constant metric dimension. In this paper, we study the metric properties of an infinite class of circulant graphs with three generators denoted by [Formula: see text] for any positive integer [Formula: see text] and when [Formula: see text]. We compute the diameter and determine the exact value of the metric dimension of these circulant graphs.


2020 ◽  
Vol 12 (03) ◽  
pp. 2050037
Author(s):  
Ruby Nasir ◽  
Zohaib Zahid ◽  
Sohail Zafar

The minimum edge version of metric basis is the smallest set [Formula: see text] of edges in a connected graph [Formula: see text] such that for every pair of edges [Formula: see text] [Formula: see text][Formula: see text] there exists an edge [Formula: see text] [Formula: see text][Formula: see text] for which [Formula: see text] [Formula: see text] [Formula: see text] holds. In this paper, the families of grid graphs and generalized prism graphs have been studied for edge version of metric dimension. Edge version of metric dimension is found to be constant for both families of graphs.


Symmetry ◽  
2018 ◽  
Vol 10 (8) ◽  
pp. 300 ◽  
Author(s):  
Zafar Hussain ◽  
Mobeen Munir ◽  
Maqbool Chaudhary ◽  
Shin Kang

Concepts of resolving set and metric basis has enjoyed a lot of success because of multi-purpose applications both in computer and mathematical sciences. For a connected graph G(V,E) a subset W of V(G) is a resolving set for G if every two vertices of G have distinct representations with respect to W. A resolving set of minimum cardinality is called a metric basis for graph G and this minimum cardinality is known as metric dimension of G. Boron nanotubes with different lattice structures, radii and chirality’s have attracted attention due to their transport properties, electronic structure and structural stability. In the present article, we compute the metric dimension and metric basis of 2D lattices of alpha-boron nanotubes.


2021 ◽  
Vol 9 ◽  
Author(s):  
Sunny Kumar Sharma ◽  
Hassan Raza ◽  
Vijay Kumar Bhat

Minimum resolving sets (edge or vertex) have become an integral part of molecular topology and combinatorial chemistry. Resolving sets for a specific network provide crucial information required for the identification of each item contained in the network, uniquely. The distance between an edge e = cz and a vertex u is defined by d(e, u) = min{d(c, u), d(z, u)}. If d(e1, u) ≠ d(e2, u), then we say that the vertex u resolves (distinguishes) two edges e1 and e2 in a connected graph G. A subset of vertices RE in G is said to be an edge resolving set for G, if for every two distinct edges e1 and e2 in G we have d(e1, u) ≠ d(e2, u) for at least one vertex u ∈ RE. An edge metric basis for G is an edge resolving set with minimum cardinality and this cardinality is called the edge metric dimension edim(G) of G. In this article, we determine the edge metric dimension of one-pentagonal carbon nanocone (1-PCNC). We also show that the edge resolving set for 1-PCNC is independent.


Mathematics ◽  
2021 ◽  
Vol 9 (21) ◽  
pp. 2789
Author(s):  
Alejandro Estrada-Moreno

Given a connected graph G=(V(G),E(G)), a set S⊆V(G) is said to be a k-metric generator for G if any pair of different vertices in V(G) is distinguished by at least k elements of S. A metric generator of minimum cardinality among all k-metric generators is called a k-metric basis and its cardinality is the k-metric dimension of G. We initially present a linear programming problem that describes the problem of finding the k-metric dimension and a k-metric basis of a graph G. Then we conducted a study on the k-metric dimension of a unicyclic graph.


2020 ◽  
Vol 17 (4) ◽  
pp. 1288
Author(s):  
Siti Aisyah ◽  
Mohammad Imam Utoyo ◽  
Liliek Susilowati

The local resolving neighborhood  of a pair of vertices  for  and  is if there is a vertex  in a connected graph  where the distance from  to  is not equal to the distance from  to , or defined by . A local resolving function  of  is a real valued function   such that  for  and . The local fractional metric dimension of graph  denoted by , defined by  In this research, the author discusses about the local fractional metric dimension of comb product are two graphs, namely graph  and graph , where graph  is a connected graphs and graph  is a complate graph  and denoted by  We get


2018 ◽  
Vol 2 (2) ◽  
pp. 88
Author(s):  
Rokhana Ayu Solekhah ◽  
Tri Atmojo Kusmayadi

<p>Let <span class="math"><em>G</em></span> be a connected graph and let <span class="math"><em>u</em>, <em>v</em></span> <span class="math"> ∈ </span> <span class="math"><em>V</em>(<em>G</em>)</span>. For an ordered set <span class="math"><em>W</em> = {<em>w</em><sub>1</sub>, <em>w</em><sub>2</sub>, ..., <em>w</em><sub><em>n</em></sub>}</span> of <span class="math"><em>n</em></span> distinct vertices in <span class="math"><em>G</em></span>, the representation of a vertex <span class="math"><em>v</em></span> of <span class="math"><em>G</em></span> with respect to <span class="math"><em>W</em></span> is the <span class="math"><em>n</em></span>-vector <span class="math"><em>r</em>(<em>v</em>∣<em>W</em>) = (<em>d</em>(<em>v</em>, <em>w</em><sub>1</sub>), <em>d</em>(<em>v</em>, <em>w</em><sub>2</sub>), ..., </span> <span class="math"><em>d</em>(<em>v</em>, <em>w</em><sub><em>n</em></sub>))</span>, where <span class="math"><em>d</em>(<em>v</em>, <em>w</em><sub><em>i</em></sub>)</span> is the distance between <span class="math"><em>v</em></span> and <span class="math"><em>w</em><sub><em>i</em></sub></span> for <span class="math">1 ≤ <em>i</em> ≤ <em>n</em></span>. The set <span class="math"><em>W</em></span> is a local metric set of <span class="math"><em>G</em></span> if <span class="math"><em>r</em>(<em>u</em> ∣ <em>W</em>) ≠ <em>r</em>(<em>v</em> ∣ <em>W</em>)</span> for every pair <span class="math"><em>u</em>, <em>v</em></span> of adjacent vertices of <span class="math"><em>G</em></span>. The local metric set of <span class="math"><em>G</em></span> with minimum cardinality is called a local metric basis for <span class="math"><em>G</em></span> and its cardinality is called a local metric dimension, denoted by <span class="math"><em>l</em><em>m</em><em>d</em>(<em>G</em>)</span>. In this paper we determine the local metric dimension of a <span class="math"><em>t</em></span>-fold wheel graph, <span class="math"><em>P</em><sub><em>n</em></sub></span> <span class="math"> ⊙ </span> <span class="math"><em>K</em><sub><em>m</em></sub></span> graph, and generalized fan graph.</p>


2017 ◽  
Vol 17 (02) ◽  
pp. 1750007 ◽  
Author(s):  
ZHAO WANG ◽  
YAPING MAO ◽  
CHENGFU YE ◽  
HAIXING ZHAO

The super edge-connectivity [Formula: see text] of a connected graph G is the minimum cardinality of an edge-cut F in G such that every component of G − F contains at least two vertices. Denote by [Formula: see text] the strong product of graphs G and H. For two graphs G and H, Yang proved that [Formula: see text]. In this paper, we give another proof of this result. In particular, we determine [Formula: see text] if [Formula: see text] and [Formula: see text], where [Formula: see text] denotes the minimum edge-degree of a graph G.


Sign in / Sign up

Export Citation Format

Share Document