MODELING THE ECONOMICS OF THE REFERENCE LEVELS FOR FOREST MANAGEMENT EMISSIONS IN THE EU

2016 ◽  
Vol 07 (03) ◽  
pp. 1650006 ◽  
Author(s):  
JANI LATURI ◽  
JUSSI LINTUNEN ◽  
JUSSI UUSIVUORI

In the Durban climate change conference of UNFCCC in 2011 new accounting rules were agreed for forest sector in Annex I countries to provide incentives for forest management and emission mitigation. There was also pressure to modify accounting rules to avoid giving credits for sequestration which would occur naturally. New accounting rules are based on reference levels against which greenhouse gas emissions and sinks resulting from forest management are compared during the second commitment period (2013–2020) of the Kyoto Protocol. In this study we investigate the timber market impacts and the effectiveness of the reference level policy in promoting forest management actions in the EU countries. We also study how setting of caps for policy-based gains affects the effectiveness of the policy. We found that the policy enhances carbon sequestration, if it is implemented in such a way that it affects harvests. The market impacts and the effects on forest sinks can be substantial in countries where non-LULUCF sector emissions are high relative to the potential of forest resources to act as sinks. In smaller countries with relatively large forest resources, the effectiveness of the policy is dampened by upper limits imposed on the emission compensations. The results of our study can be used to improve the effectiveness of policies in climate change negotiations.

2021 ◽  
Vol 8 (1) ◽  
Author(s):  
Matieu Henry ◽  
Zaheer Iqbal ◽  
Kristofer Johnson ◽  
Mariam Akhter ◽  
Liam Costello ◽  
...  

Abstract Background National forest inventory and forest monitoring systems are more important than ever considering continued global degradation of trees and forests. These systems are especially important in a country like Bangladesh, which is characterised by a large population density, climate change vulnerability and dependence on natural resources. With the aim of supporting the Government’s actions towards sustainable forest management through reliable information, the Bangladesh Forest Inventory (BFI) was designed and implemented through three components: biophysical inventory, socio-economic survey and remote sensing-based land cover mapping. This article documents the approach undertaken by the Forest Department under the Ministry of Environment, Forests and Climate Change to establish the BFI as a multipurpose, efficient, accurate and replicable national forest assessment. The design, operationalization and some key results of the process are presented. Methods The BFI takes advantage of the latest and most well-accepted technological and methodological approaches. Importantly, it was designed through a collaborative process which drew from the experience and knowledge of multiple national and international entities. Overall, 1781 field plots were visited, 6400 households were surveyed, and a national land cover map for the year 2015 was produced. Innovative technological enhancements include a semi-automated segmentation approach for developing the wall-to-wall land cover map, an object-based national land characterisation system, consistent estimates between sample-based and mapped land cover areas, use of mobile apps for tree species identification and data collection, and use of differential global positioning system for referencing plot centres. Results Seven criteria, and multiple associated indicators, were developed for monitoring progress towards sustainable forest management goals, informing management decisions, and national and international reporting needs. A wide range of biophysical and socioeconomic data were collected, and in some cases integrated, for estimating the indicators. Conclusions The BFI is a new information source tool for helping guide Bangladesh towards a sustainable future. Reliable information on the status of tree and forest resources, as well as land use, empowers evidence-based decision making across multiple stakeholders and at different levels for protecting natural resources. The integrated socio-economic data collected provides information about the interactions between people and their tree and forest resources, and the valuation of ecosystem services. The BFI is designed to be a permanent assessment of these resources, and future data collection will enable monitoring of trends against the current baseline. However, additional institutional support as well as continuation of collaboration among national partners is crucial for sustaining the BFI process in future.


2018 ◽  
Vol 60 (1) ◽  
pp. 3-10
Author(s):  
Krzysztof Jabłoński ◽  
Włodzimierz Stempski

Abstract Forests and forest management play a vital role in capture and storage of carbon dioxide, which contributes to mitigation of climate change. Forests are not only a natural carbon sink. Proper forest management can enhance biomass production, providing wood to be converted into e.g. construction timber, paper and furniture as well as wood fuels and, as a result, considerably enlarge this carbon sink. Poland, being a party of the Climate Convention and Kyoto Protocol and a member of the EU is obliged to provide yearly reports on carbon emissions and sequestration, including the Land Use, Land Use Change and Forestry (LULUCF) sector, of which forestry is the leading constituent. Forests, with the sequestration rate at a level of 3.93 t CO2·ha−1 form practically the only important carbon sink in the LULUCF category. Unfortunately the LULUCF sector has not been yet included in the current climate policy framework. The purpose of the study was an attempt to estimate the hypothetical value of carbon stored in forestry, resulting from the reported quantities of the emitted and sequestered carbon. The calculations were based on figures included in the National Inventory Report for Poland, reported yearly to the Secretariat of the Climate Convention. Among the forestry carbon sources/sinks, reported annually, the sequestration resulting from forest management significantly exceeds the net sequestration from afforestation/deforestation activities. Average data from recent years show that forest management is a net CO2 sink, with 12 Mt CO2·y−1 (above the forest management reference level, FMRL), and when combined with the carbon pool change resulting from afforestation/deforestation activities, it can be regarded as a net carbon sink sequestering nearly 15 Mt CO2·y−1. That value, when multiplied by the price of carbon emission allowance (e.g. EUA), could be a source of over 80 mill Euros per year, if used as a commodity on the emissions market. Due to high price volatility of CO2 emission allowances, the calculated profits are hypothetical, and the EU Emissions Trading System does not include forestry. These potential gains can become realistic after the LULUCF sector has been included in the emissions trading system.


2014 ◽  
Vol 112 (5) ◽  
pp. 424-433 ◽  
Author(s):  
Maria K. Janowiak ◽  
Christopher W. Swanston ◽  
Linda M. Nagel ◽  
Leslie A. Brandt ◽  
Patricia R. Butler ◽  
...  

2021 ◽  
Vol 13 (5) ◽  
pp. 2778
Author(s):  
Gintautas Mozgeris ◽  
Vaiva Kazanavičiūtė ◽  
Daiva Juknelienė

Lithuanian forestry has long been shaped by the classical normal forest theory, aiming for even long-term flow of timber, and the aspiration to preserve domestic forest resources, leading to very conservative forest management. With radically changing forest management conditions, climate change mitigation efforts suggest increasing timber demands in the future. The main research question asked in this study addresses whether current forest management principles in Lithuania can secure non-decreasing long-term flow of timber and carbon accumulation. The development of national forest resources and forestry was simulated for the next century using the Kupolis decision support system and assuming that current forest management is continued under the condition of three scenarios, differing by climate change mitigation efforts. Potential development trends of key forest attributes were analysed and compared with projected carbon stock changes over time, incorporating major forest carbon pools—biomass, harvested wood products and emission savings due to energy and product substitution. The key finding was that the total carbon balance should remain positive in Lithuania during the next one hundred years; however, it might start to decrease after several decades, with steadily increasing harvesting and a reduced increase of forest productivity. Additionally, incorporating the harvested wood and CO2 emissions savings in carbon balance evaluations is essential.


2005 ◽  
Vol 81 (5) ◽  
pp. 691-695 ◽  
Author(s):  
David L Spittlehouse

Future climate change will affect society's ability to use forest resources. We take account of climate in forest management and this will help us adapt to the effects of climate change on forests. However, society will have to adjust to how forests adapt by changing expectations for the use of forest resources because management can only influence the timing and direction of forest adaptation at selected locations. There will be benefits as well as loses and an important component of adaptation will be balancing values. Adaptation options to respond to impacts on the timber supply in Canada for the next 50 to 100 years are limited mainly to forest protection and wood utilisation because these forests are already in the ground. Adaptation through reforestation will focus on commercial tree species. It is important to start developing adaptation strategies now. These include assessing forest vulnerability to climate change, revising expectations of forest use, determining research and educational needs, development of forest policies to facilitate adaptation, and determining when to implement responses. Government agencies should take the lead in creating an environment to foster adaptation in forestry and in developing the necessary information required to respond. Key words: climate change, impacts, adaptation, vulnerability, forests, ecosystems, risk management


2007 ◽  
Vol 64 (4) ◽  
pp. 702-706 ◽  
Author(s):  
M. O. Hammill ◽  
G. B. Stenson

Abstract Hammill, M. O., and Stenson, G. B. 2007. Application of the precautionary approach and conservation reference points to management of Atlantic seals. – ICES Journal of Marine Science, 64: 702–706. Resource management requires a trade-off between conservation, economic, and political concerns in establishing harvest levels. The precautionary approach (PA) brings scientists, resource managers, and stakeholders together to identify clear management objectives and to agree on population benchmarks that would initiate certain management actions when those benchmarks are exceeded. A conceptual framework for applying the PA to marine mammals is outlined. For a data-rich species, precautionary and conservation reference levels are proposed. When a population falls below the precautionary reference level, increasingly risk-averse conservation measures are applied. A more conservative, risk-averse approach is required for managing data-poor species. The framework has been implemented for the management of commercial seal harvests in Atlantic Canada.


Author(s):  
Bhoj Raj Ghimire ◽  
Bhogendra Mishra ◽  
Masahiko Nagai ◽  
Kitamoto Asanobu ◽  
Nophea Sasaki

United Nations Framework Conventions on Climate Change (UNFCC) conventions in their conference of parties (COPs) has continuously considered and agreed reducing emission level in order to minimize the impact of global climate change. Reducing emission due to deforestation and degradation (REDD) ,was considered as one of the major activities in this regard during Kyoto protocol in 2009 which laid foundation for the participating countries to be compensated financially for reduced carbon emission. Mexico convention -2012 required the countries to develop and implement a transparent and consistent monitoring, reporting and verification (MRV) process. Later in Paris agreement-2015, the parties agreed to limit the global warming to 2 degree centigrade and with further efforts to 1.5-degree centigrade furthering entailing the parties to prepare and communicate nationally determined contributions (NDCs) every five years. Nepal aimed to decrease the average annual deforestation rate by 0.05 percent from existing 0.44 percent in the terai region and 0.1 percent in the Chure. Nepal decided to develop its forest reference level (FRL) in national level for the historical period 2000-2010 considering Carbon dioxide and carbon pools above and below ground. As per the Forestry Sector Strategy, Nepal aims to increase carbon stock growth by at least 5% by 2025 as compared to 2015 and decrease mean annual deforestation rate to 0.05. After major change in administrative division in Nepal, forest management responsibility has shifted down to the Sub-national level. But forest resource studies have not been conducted yet in these levels. Despite a small country, Nepal has at least four clear physiological regions. The amount of carbon stock stored by different forest type are different depending upon species distribution, carbon volume and density for each species, and their distribution along ecological and physiological regions. Sal (shorea Robusta), for example, having one of the highest carbon densities, is a major forest types in Nepal. The purpose of this study was to generate forest map of the country, calculate carbon stock, gain and loss, and their rate in each province due to deforestation/afforestation using remote sensing data. Further Sal forest map was generated and its contribution in carbon stock was calculated using averaged national carbon density as well as using regional density method. According to the study, around 5.1 million hectares of Nepali land was forest in 2015 increasing from 4.2 million hectares in 2005. However, Sal forest has decreased during the same period. Province 1 contributed the maximum (130 Tg) and Province 2 the minimum (40Tg) of Carbon stock in 2015. Using the conventional method of calculation with national average density (108.08 t/ha), a total of 36.7T CO2 yr-1 carbon sink was observed in the Country. Whereas, with the new approach of calculation, a total of 44.7 T CO2 e of carbon sink per year was estimated during the same period. This approach holds potential for qualifying as an MRV process of Nepal. The subnational level forest and carbon statistics produced during this study can be important assets for the better forest governance. This can also pave way for policy formation and preparation of action plan for sustainable forest management and intervention strategy and obtaining better financial incentives participating in the reduction of emission due to deforestation and forest degradation (REDD) plus programs.


2012 ◽  
Vol 163 (12) ◽  
pp. 481-492
Author(s):  
Andreas Rigling ◽  
Ché Elkin ◽  
Matthias Dobbertin ◽  
Britta Eilmann ◽  
Arnaud Giuggiola ◽  
...  

Forest and climate change in the inner-Alpine dry region of Visp Over the past decades, observed increases in temperature have been particularly pronounced in mountain regions. If this trend should continue in the 21st Century, frequency and intensity of droughts will increase, and will pose major challenges for forest management. Under current conditions drought-related tree mortality is already an important factor of forest ecosystems in dry inner-Alpine valleys. Here we assess the sensitivity of forest ecosystems to climate change and evaluate alternative forest management strategies in the Visp region. We integrate data from forest monitoring plots, field experiments and dynamic forests models to evaluate how the forest ecosystem services timber production, protection against natural hazards, carbon storage and biodiver-sity will be impacted. Our results suggest that at dry low elevation sites the drought tolerance of native tree species will be exceeded so that in the longer term a transition to more drought-adapted species should be considered. At medium elevations, drought and insect disturbances as by bark beetles are projected to be important for forest development, while at high elevations forests are projected to expand and grow better. All of the ecosystem services that we considered are projected to be impacted by changing forest conditions, with the specific impacts often being elevation-dependent. In the medium term, forest management that aims to increase the resilience of forests to drought can help maintain forest ecosystem services temporarily. However, our results suggest that relatively rigid management interventions are required to achieve significant effects. By using a combination of environmental monitoring, field experiments and modeling, we are able to gain insight into how forest ecosystem, and the services they provide, will respond to future changes.


Water ◽  
2021 ◽  
Vol 13 (6) ◽  
pp. 816
Author(s):  
Danijela Markovic ◽  
Jörg Freyhof ◽  
Oskar Kärcher

Thermal response curves that depict the probability of occurrence along a thermal gradient are used to derive various species’ thermal properties and abilities to cope with warming. However, different thermal responses can be expected for different portions of a species range. We focus on differences in thermal response curves (TRCs) and thermal niche requirements for four freshwater fishes (Coregonus sardinella, Pungitius pungitius, Rutilus rutilus, Salvelinus alpinus) native to Europe at (1) the global and (2) European continental scale. European ranges captured only a portion of the global thermal range with major differences in the minimum (Tmin), maximum (Tmax) and average temperature (Tav) of the respective distributions. Further investigations of the model-derived preferred temperature (Tpref), warming tolerance (WT = Tmax − Tpref), safety margin (SM = Tpref − Tav) and the future climatic impact showed substantially differing results. All considered thermal properties either were under- or overestimated at the European level. Our results highlight that, although continental analyses have an impressive spatial extent, they might deliver misleading estimates of species thermal niches and future climate change impacts, if they do not cover the full species ranges. Studies and management actions should therefore favor whole global range distribution data for analyzing species responses to environmental gradients.


Sign in / Sign up

Export Citation Format

Share Document