Cerebral sympathetic nerve activity has a major regulatory role in the cerebral circulation in REM sleep

2009 ◽  
Vol 106 (4) ◽  
pp. 1050-1056 ◽  
Author(s):  
Priscila A. Cassaglia ◽  
Robert I. Griffiths ◽  
Adrian M. Walker

Sympathetic nerve activity (SNA) in neurons projecting to skeletal muscle blood vessels increases during rapid-eye-movement (REM) sleep, substantially exceeding SNA of non-REM (NREM) sleep and quiet wakefulness (QW). Similar SNA increases to cerebral blood vessels may regulate the cerebral circulation in REM sleep, but this is unknown. We hypothesized that cerebral SNA increases during phasic REM sleep, constricting cerebral vessels as a protective mechanism against cerebral hyperperfusion during the large arterial pressure surges that characterize this sleep state. We tested this hypothesis using a newly developed model to continuously record SNA in the superior cervical ganglion (SCG) before, during, and after arterial pressure surges occurring during REM in spontaneously sleeping lambs. Arterial pressure (AP), intracranial pressure (ICP), cerebral blood flow (CBF), cerebral vascular resistance [CVR = (AP − ICP)/CBF], and SNA from the SCG were recorded in lambs ( n = 5) undergoing spontaneous sleep-wake cycles. In REM sleep, CBF was greatest (REM > QW = NREM, P < 0.05) and CVR was least (REM < QW = NREM, P < 0.05). SNA in the SCG did not change from QW to NREM sleep but increased during tonic REM sleep, with a further increase during phasic REM sleep (phasic REM > tonic REM > QW = NREM, P < 0.05). Coherent averaging revealed that SNA increases preceded AP surges in phasic REM sleep by 12 s ( P < 0.05). We report the first recordings of cerebral SNA during natural sleep-wake cycles. SNA increases markedly during tonic REM sleep, and further in phasic REM sleep. As SNA increases precede AP surges, they may serve to protect the brain against potentially damaging intravascular pressure changes or hyperperfusion in REM sleep.

2003 ◽  
Vol 284 (2) ◽  
pp. R467-R473 ◽  
Author(s):  
Kenju Miki ◽  
Makiko Kato ◽  
Suzuko Kajii

The relationship between renal sympathetic nerve activity (RSNA) and systemic arterial pressure obtained during rapid eye movement (REM) sleep was compared with that obtained in other sleep and awake states. Electrodes for the measurements of RSNA, electrocardiogram, electromyogram, and electroencephalogram and a catheter for the measurement of systemic arterial pressure were implanted while the animals were under aseptic conditions at least 5 days before the experiment. During the transition from non-REM (NREM) to REM sleep, RSNA and heart rate (HR) decreased immediately by 46 ± 2% ( P < 0.05) and 22 ± 3 beats/min ( P < 0.05), respectively, over 3 s after the onset of REM sleep. Meanwhile, systemic arterial pressure increased gradually after the onset of REM sleep, which was apparently independent of the changes in RSNA. During REM sleep, the relationships between RSNA/HR and systemic arterial pressure were dissociated compared with that obtained during the other behavioral states. These data indicate that the interdependency between systemic arterial pressure and RSNA during REM sleep is likely to be modified compared with other behavioral states.


2004 ◽  
Vol 286 (5) ◽  
pp. R881-R887 ◽  
Author(s):  
Misa Yoshimoto ◽  
Tamaki Sakagami ◽  
Satsuki Nagura ◽  
Kenju Miki

The purpose of the present study was to determine the relationship between renal sympathetic nerve activity (RSNA) and renal blood flow (RBF) during normal daily activity in conscious, chronically instrumented Wistar rats ( n = 8). The animal's behavior was classified as rapid eye movement (REM) sleep, non-REM (NREM) sleep, quiet awake, moving, and grooming states. On average RSNA was lowest during REM sleep, which was decreased by 39.0 ± 3.2% ( P < 0.05) relative to NREM sleep, and rose linearly with an increase in activity level in the order of quiet awake (by 10.9 ± 1.8%, P < 0.05), moving (by 29.4 ± 2.9%, P < 0.05), and grooming (by 65.3 ± 3.9%, P < 0.05) relative to NREM sleep. By contrast, RBF was highest during REM sleep, which was increased by 4.8 ± 0.7% ( P < 0.05) relative to NREM sleep and decreased significantly ( P < 0.05) by 5.5 ± 0.6 and 6.6 ± 0.5% during moving and grooming states, respectively, relative to NREM sleep. There was a significant ( P < 0.05) inverse linear relationship between the percent changes in RSNA and RBF and between those in RSNA and renal vascular conductance. Furthermore, renal denervation ( n = 8) abolished the changes in RBF induced by different natural behavioral activities. These results suggest that the changes in RSNA induced by natural behavioral activities had a significant influence on RBF.


2008 ◽  
Vol 294 (4) ◽  
pp. R1255-R1261 ◽  
Author(s):  
Priscila A. Cassaglia ◽  
Robert I. Griffiths ◽  
Adrian M. Walker

Sympathetic vasoconstriction of cerebral vessels has been proposed to be a protective mechanism for the brain, limiting cerebral perfusion and microcirculatory pressure during transient increases in arterial pressure. To furnish direct neural evidence for this proposition, we aimed to develop a method for recording cerebral sympathetic nerve activity (SNA) from the superior cervical ganglion (SCG). We hypothesized that SNA recorded from the SCG increases during imposed hypertension, but not during hypotension. Lambs ( n = 11) were anesthetized (α-chloralose, 20 mg·kg−1·h−1) and ventilated. SNA was measured using 25-μm tungsten microelectrodes inserted into the SCG. Arterial blood pressure (AP) was pharmacologically raised (adrenaline, phenylephrine, or ANG II, 1–50 μg/kg iv), mechanically raised (intravascular balloon in the thoracic aorta), or lowered (sodium nitroprusside, 1–50 μg/kg iv). In response to adrenaline ( n = 10), mean AP increased 135 ± 10% from baseline (mean ± SE), and the RMS value of SNA (Square Root of the Mean of the Squares, SNARMS) increased 255 ± 120%. In response to mechanically induced hypertension, mean AP increased 43 ± 3%, and SNARMS increased 53 ± 13%. Generally, (9 of 10 animals), SNARMS did not increase, as AP was lowered with sodium nitroprusside. Using a new model for direct recording of cerebral SNA from the SCG, we have demonstrated that SNA increases in response to large induced rises, but not falls, in AP. These findings furnish direct support for the proposed protective role for sympathetic nerves in the cerebral circulation.


2013 ◽  
Vol 17 (4) ◽  
pp. 599-606 ◽  
Author(s):  
Shannon M. Harlan ◽  
Deng-Fu Guo ◽  
Donald A. Morgan ◽  
Caroline Fernandes-Santos ◽  
Kamal Rahmouni

1999 ◽  
Vol 276 (1) ◽  
pp. H27-H32 ◽  
Author(s):  
Jennifer M. Kulics ◽  
Heidi L. Collins ◽  
Stephen E. DiCarlo

Mean arterial pressure (MAP), the product of cardiac output (CO) and total peripheral resistance (TPR), is reduced below preexercise levels after a single bout of mild to moderate dynamic exercise. Thus acute, dynamic exercise may be used as a safe, therapeutic approach to reduce MAP. However, the mechanisms responsible for the postexercise hypotension (PEH) are unknown. We tested the hypothesis that PEH is associated with reductions in TPR and sympathetic nerve activity (SNA). Two experimental protocols were designed to test this hypothesis in male spontaneously hypertensive rats (SHR). In protocol 1( n = 9), CO and TPR were determined before, during, and after exercise. In protocol 2 ( n = 7), lumbar SNA (LSNA) was recorded before and after exercise. Rats in protocol 1 were chronically instrumented with left carotid arterial catheters and ascending aortic Doppler ultrasonic flow probes. Rats in protocol 2 were chronically instrumented with left carotid arterial catheters and electrodes around the lumbar sympathetic trunk. Dynamic treadmill exercise (9–12 m/min, 10% grade for 40 min) resulted in a postexercise reduction in MAP (from 143 ± 5 to 128 ± 4 mmHg, P < 0.05). Associated with the PEH was a reduction in TPR (from 28 ± 3 to 19 ± 2 mmHg/kHz; P < 0.05) and an elevation in CO (from 5.7 ± 0.4 to 7.2 ± 0.5 kHz; P < 0.05). The reductions in arterial pressure and TPR were associated with a decrease in LSNA (from 98 ± 3 to 49 ± 6%; P < 0.05). These results suggest that PEH is mediated by reductions in TPR and SNA.


2004 ◽  
Vol 557 (1) ◽  
pp. 261-271 ◽  
Author(s):  
Kenju Miki ◽  
Michiyo Oda ◽  
Nozomi Kamijyo ◽  
Kazumi Kawahara ◽  
Misa Yoshimoto

2005 ◽  
Vol 187 (2) ◽  
pp. 275-281 ◽  
Author(s):  
C J Charles ◽  
D L Jardine ◽  
M G Nicholls ◽  
A M Richards

The sympathetic nervous system and adrenomedullin (AM) both participate in the regulation of cardiac and circulatory function but their interaction remains uncertain. We have examined the effects of AM on cardiac sympathetic nerve activity (CSNA) and hemodynamics and contrasted these effects with pressure-matched nitro-prusside (NP) administration in normal conscious sheep. Compared with vehicle control, arterial pressure fell similarly with AM (P=0.04) and NP (P<0.001). Heart rate rose in response to both AM (P<0.001) and NP (P=0.002) but the rise with AM was significantly greater than that induced by NP (P<0.001). Cardiac output increased in response to AM compared with both control and NP (both P<0.001). CSNA burst frequency (bursts/min) were increased in response to both AM (P<0.001) and NP (P=0.005) with the rise in burst frequency being greater with AM compared with NP (P<0.001). CSNA burst area/min was also raised by both AM (P=0.03) and NP (P=0.002) with a trend for burst area being greater with AM than NP (P=0.07). CSNA burst incidence (bursts/100 beats) showed no significant differences between any treatment day. In conclusion, we have demonstrated that AM is associated with a greater increase in CSNA and heart rate for a given change in arterial pressure than seen with the classic balanced vasodilator NP.


1989 ◽  
Vol 67 (1) ◽  
pp. 250-255 ◽  
Author(s):  
J. P. Fluckiger ◽  
G. Gremaud ◽  
B. Waeber ◽  
A. Kulik ◽  
A. Ichino ◽  
...  

A new system was developed in our laboratory to continuously monitor intra-arterial pressure, heart rate, and sympathetic nerve activity in unanesthetized rats. The animals were prepared 24 h before the start of the experiments. Sympathoneural traffic was measured at the level of splanchnic nerve. The amplitude of the spikes recorded at this level was utilized to express sympathetic nerve activity. The amplitude of the residual electroneurogram signal present 30 min after the rats were killed was 32 +/- 2 mV (mean +/- SE; n = 11). For analysis, these background values were subtracted from values determined in vivo. The nerve we studied contains postganglionic fibers, since electrical activity decreased in response to ganglionic blockade with pentolinium (1.25 mg/min iv for 4 min). The amplitude of spikes fell by 43 +/- 4% (n = 4). Sympathetic nerve activity was highly reproducible at a 24-h interval (104 +/- 26 vs. 111 +/- 27 mV for the amplitude of spikes; n = 11). Dose-response curves to the alpha 1-stimulant methoxamine and to bradykinin were established in four rats. The increase in blood pressure induced by methoxamine caused a dose-dependent fall in sympathetic nerve activity, whereas the blood pressure reduction resulting from bradykinin was associated with a dose-dependent activation of sympathetic drive. These data therefore indicate that it is possible with out system to accurately measure sympathetic nerve activity in the awake rat, together with intra-arterial pressure and heart rate.


Sign in / Sign up

Export Citation Format

Share Document