X-ray Diffraction Studies of Solid Solutions of Pentaglycerine-Neopentylglycol

1988 ◽  
Vol 32 ◽  
pp. 609-616 ◽  
Author(s):  
D. Chandra ◽  
C. S. Barrett ◽  
D. K. Benson

AbstractAn array of molecules that is anisotropic in the extreme has been discovered in certain thermal-energy storage materials and is reported here: neopentylglycol (NPG) and NPG-rich solid solutions with pentaglycerine (PG) have a crystal structure, stable at room temperature, that consists of bimolecular chains of molecules that are all unidirectionally aligned throughout a crystal. There are hydrogen bonds between every molecule in one chain and its neighbors in that chain, but none between molecules of one chain and any molecules of the neighboring parallel chains. Thus there are strong intermolecular bonds along each chain and only weaker bonds between the chains. The structure has been determined by using modern single crystal techniques with 529 independent reflections from a crystal of NPG (C5H12O2). The structure is monoclinic with space group P21/c - C2h5. This anisotropic structure transforms to a cubic structure at higher temperatures.

2020 ◽  
Vol 34 (19) ◽  
pp. 2050180
Author(s):  
Y. I. Aliyev ◽  
Y. G. Asadov ◽  
L. B. Rustamova ◽  
A. O. Dashdemirov ◽  
N. A. Ismayilova ◽  
...  

Single crystals of Cu[Formula: see text]Te, Cu[Formula: see text]Zn[Formula: see text]Te and Cu[Formula: see text]Cd[Formula: see text]Te compounds were synthesized by Brijmen method and their crystal structure was studied by X-ray diffraction. The hexagonal, orthorhombic aand cubic structure phases of these compounds have been determined at room-temperature. Phase transitions at high-temperatures were observed. Lattice parameters for hexagonal, orthorhombic and cubic phases have been determined in the temperature range of [Formula: see text]–1073 K. From the temperature dependences of the lattice parameters, the coefficients of thermal expansion of the existing modifications in the main crystallographic directions were calculated.


2021 ◽  
Vol 2021 ◽  
pp. 1-8
Author(s):  
Rawia Nasri ◽  
Regaya Ksiksi ◽  
Mohsen Graia ◽  
Mohamed Faouzi Zid

A new 2,6-bis aminomethyl piperidine decavanadate hydrate, (C7N3H20)2V10O28.4.21H2O, was synthesized by slow evaporation of a solution at room temperature. The molecular structure was investigated by single-crystal X-ray diffraction. In the crystal structure, the layers of decavanadate groups, organic cations, and water molecules are arranged parallel to the (010) plane. Also, the prepared compound has been analysed by FTIR spectroscopy and scanning electron microscopy (SEM). The crystal structure of the title compound is stabilized by hydrogen bonds and van der Waals interactions. The cohesion of the structure is ensured by O-H…O and N-H…O hydrogen bonds. The three-dimensional Hirshfeld surface (3D-HS) and the relative two-dimensional fingerprint plots (2D-FPs) of (C7N3H20)2V10O28.4.21H2O compound revealed that the structure is dominated by O…H/H…O (70.8%) and H…H (18.5%) contacts.


2016 ◽  
Vol 71 (4) ◽  
pp. 305-310 ◽  
Author(s):  
Selçuk Demir ◽  
Hamide Merve Çepni ◽  
Małgorzata Hołyńska ◽  
Muammer Kavanoz

AbstractA tetranuclear copper (II) complex with pyrazole-3,5-dicarboxylate ligands (pdc3−), [Me2NH2]4[Cu4(pdc)4], was synthesized using solvothermal and metal oxidation routes and characterized by elemental analysis, infrared, thermogravimetry/differential thermal analysis, and room-temperature magnetic measurements. The structure of the complex was determined by single-crystal X-ray diffraction. It comprises dimethylammonium cations and complex anions containing four Cu2+ cations. The crystal structure is stabilized by N–H···O hydrogen bonds. In addition, the electrochemical behavior was studied.


1998 ◽  
Vol 53 (11) ◽  
pp. 1323-1325 ◽  
Author(s):  
Grzegorz Dutkiewicz ◽  
Zdzisław Pająk

The crystal structure of the room-temperature ferroelectric phase of pyridinium periodate [C6H5NH]+[IO4]- has been determined by X-ray diffraction as orthorhombic, space group Cmc2i with a = 8.347(2), b = 7.270(2), c = 12.732(3) Å and Z = 4. It was refined to R1 =0.0281 wR2 = 0.0762 for 389 absorption-corrected reflections. The structure comprises isolated IO4 tetrahedra linked together by disordered pyridinium cations involved in a network of bifurcated hydrogen bonds. The average I-O distance is found to be 1.75(1) Å.


2021 ◽  
Vol 91 (1) ◽  
pp. 72
Author(s):  
Н.В. Зайцева ◽  
А.А. Набережнов ◽  
Е.П. Смирнова

The evolution of the crystal structure of (1-x) PbFe2 / 3W1 / 3O3 - хPbTiO3 solid solutions depending on the PbTiO3concentrations (at x = 0.25, 0.3, 0.35) in the region of the morphotropic phase boundary was studied using x-ray diffraction at room temperature. It was established that all three compositions are a mixture of cubic and tetragonal phases, and an increase in the concentration of PbTiO3 above 30 mol. % leads to an increase of the tetragonal phase contribution. The parameters of the crystal structure and the content of both phases in these solid solutions are determined. It was shown that at room temperature there are static displacements of lead ions from the principle crystallographic positions.


Chemistry ◽  
2021 ◽  
Vol 3 (1) ◽  
pp. 149-163
Author(s):  
Duncan Micallef ◽  
Liana Vella-Zarb ◽  
Ulrich Baisch

N,N′,N″,N‴-Tetraisopropylpyrophosphoramide 1 is a pyrophosphoramide with documented butyrylcholinesterase inhibition, a property shared with the more widely studied octamethylphosphoramide (Schradan). Unlike Schradan, 1 is a solid at room temperature making it one of a few known pyrophosphoramide solids. The crystal structure of 1 was determined by single-crystal X-ray diffraction and compared with that of other previously described solid pyrophosphoramides. The pyrophosphoramide discussed in this study was synthesised by reacting iso-propyl amine with pyrophosphoryl tetrachloride under anhydrous conditions. A unique supramolecular motif was observed when compared with previously published pyrophosphoramide structures having two different intermolecular hydrogen bonding synthons. Furthermore, the potential of a wider variety of supramolecular structures in which similar pyrophosphoramides can crystallise was recognised. Proton (1H) and Phosphorus 31 (31P) Nuclear Magnetic Resonance (NMR) spectroscopy, infrared (IR) spectroscopy, mass spectrometry (MS) were carried out to complete the analysis of the compound.


Author(s):  
Flavien A. A. Toze ◽  
Vladimir P. Zaytsev ◽  
Lala V. Chervyakova ◽  
Elisaveta A. Kvyatkovskaya ◽  
Pavel V. Dorovatovskii ◽  
...  

The chiral title compounds, C21H18N2O2, (I), and C21H18N2OS, (II) – products of the three-component reaction between benzylamine, isatoic anhydride and furyl- or thienyl-acrolein – are isostructural and form isomorphous racemic crystals. The tetrahydropyrimidine ring in (I) and (II) adopts a sofa conformation. The amino N atom has a trigonal–pyramidal geometry [sum of the bond angles is 347.0° for both (I) and (II)], whereas the amido N atom is flat [sum of the bond angles is 359.3° for both (I) and (II)]. The furyl- and thienylethenyl substituents in (I) and (II) are planar and the conformation about the bridging C=C bond isE. These bulky fragments occupy the axial position at the quaternary C atom of the tetrahydropyrimidine ring, apparently, due to steric reasons. In the crystals, molecules of (I) and (II) form hydrogen-bonded helicoidal chains propagating along [010] by strong intermolecular N—H...O hydrogen bonds.


2012 ◽  
Vol 194 ◽  
pp. 187-193 ◽  
Author(s):  
J.M. Loureiro ◽  
Benilde F.O. Costa ◽  
Gerard Le Caër ◽  
Bernard Malaman

Ternary alloys, (Fe50−x/2Co50−x/2)Snx(x ≤ 33 at.%), are prepared by mechanical alloying from powder mixtures of the three elements. As-milled alloys are studied by X-ray diffraction and 57Fe and 119Sn Mössbauer spectroscopy. The solubility of Sn in near-equiatomic bcc FeCo is increased from ~0.5 at. % at equilibrium to ~20 at.% in the used milling conditions. The average 119Sn hyperfine magnetic field at room temperature is larger, for any x, than the corresponding fields in mechanically alloyed Fe-Sn solid solutions.


CrystEngComm ◽  
2021 ◽  
Author(s):  
Gennady V. Shilov ◽  
Elena I. Zhilyaeva ◽  
Sergey M. Aldoshin ◽  
Alexandra M Flakina ◽  
Rustem B. Lyubovskii ◽  
...  

Electrical resistivity measurements of a dual layered organic conductor (ET)4ZnBr4(1,2-C6H4Cl2) above room temperature show abrupt changes in resistivity at 320 K. Single-crystal X-ray diffraction studies in the 100-350 K range...


1964 ◽  
Vol 42 (10) ◽  
pp. 1886-1889 ◽  
Author(s):  
B. Swaroop ◽  
S. N. Flengas

The crystal structure of zirconium trichloride was determined from X-ray diffraction patterns. Zirconium trichloride belongs to the [Formula: see text]space group. The dimensions of the main cell at room temperature are: a = 5.961 ± 0.005 Å and c = 9.669 ± 0.005 Å.The density of zirconium trichloride was measured and gave the value of 2.281 ± 0.075 g/cm3 while, from the X-ray calculations, the value was found to be 2.205 g/cm3.


Sign in / Sign up

Export Citation Format

Share Document