scholarly journals Smooth Solutions of a Class of Iterative Functional Differential Equations

2012 ◽  
Vol 2012 ◽  
pp. 1-13
Author(s):  
Houyu Zhao

By Faà di Bruno’s formula, using the fixed-point theorems of Schauder and Banach, we study the existence and uniqueness of smooth solutions of an iterative functional differential equationx′(t)=1/(c0x[0](t)+c1x[1](t)+⋯+cmx[m](t)).

2011 ◽  
Vol 2011 ◽  
pp. 1-13 ◽  
Author(s):  
T. E. Govindan

This paper studies the existence and uniqueness of a mild solution for a neutral stochastic partial functional differential equation using a local Lipschitz condition. When the neutral term is zero and even in the deterministic special case, the result obtained here appears to be new. An example is included to illustrate the theory.


2021 ◽  
Vol 0 (0) ◽  
pp. 0
Author(s):  
Jun Zhou ◽  
Jun Shen

<p style='text-indent:20px;'>In this paper we consider the existence, uniqueness, boundedness and continuous dependence on initial data of positive solutions for the general iterative functional differential equation <inline-formula><tex-math id="M1">\begin{document}$ \dot{x}(t) = f(t,x(t),x^{[2]}(t),...,x^{[n]}(t)). $\end{document}</tex-math></inline-formula> As <inline-formula><tex-math id="M2">\begin{document}$ n = 2 $\end{document}</tex-math></inline-formula>, this equation can be regarded as a mixed-type functional differential equation with state-dependence <inline-formula><tex-math id="M3">\begin{document}$ \dot{x}(t) = f(t,x(t),x(T(t,x(t)))) $\end{document}</tex-math></inline-formula> of a special form but, being a nonlinear operator, <inline-formula><tex-math id="M4">\begin{document}$ n $\end{document}</tex-math></inline-formula>-th order iteration makes more difficulties in estimation than usual state-dependence. Then we apply our results to the existence, uniqueness, boundedness, asymptotics and continuous dependence of solutions for the mixed-type functional differential equation. Finally, we present two concrete examples to show the boundedness and asymptotics of solutions to these two types of equations respectively.</p>


2004 ◽  
Vol 2004 (10) ◽  
pp. 897-905 ◽  
Author(s):  
Xi-lan Liu ◽  
Guang Zhang ◽  
Sui Sun Cheng

We establish the existence of three positive periodic solutions for a class of delay functional differential equations depending on a parameter by the Leggett-Williams fixed point theorem.


Author(s):  
Jian-Guo Si ◽  
Sui Sun Cheng

This paper is concerned with an iterative functional differential equation x(t) = c1x(t) + c2x[2](t) + … cmχ[m](t) + F(t), where x[i](t) is the i-th iterate of the function x(t). By means of Schauder's Fixed Point Theorem, we establish a local existence theorem for smooth solutions which also depend continuously on the forcing function F(t).


2012 ◽  
Vol 616-618 ◽  
pp. 2137-2141
Author(s):  
Zhi Min Luo ◽  
Bei Fei Chen

This paper studied the asymptotic behavior of a class of nonlinear functional differential equations by using the Bellman-Bihari inequality. We obtain results which extend and complement those in references. The results indicate that all non-oscillatory continuable solutions of equation are asymptotic to at+b as under some sufficient conditions, where a,b are real constants. An example is provided to illustrate the application of the results.


2009 ◽  
Vol 2009 ◽  
pp. 1-14 ◽  
Author(s):  
Tongbo Liu ◽  
Hong Li

We investigate the existence of analytic solutions of a class of second-order differential equations involving iterates of the unknown function in the complex field . By reducing the equation with the Schröder transformation to the another functional differential equation without iteration of the unknown function + = , we get its local invertible analytic solutions.


1991 ◽  
Vol 43 (2) ◽  
pp. 331-339 ◽  
Author(s):  
Vasil G. Angelov

The purpose of the paper is to introduce a class of “j-nonexpansive” mappings and to prove fixed point theorems for such mappings. They naturally arise in the existence theory of functional differential equations. These mappings act in spaces without specific geometric properties as, for instance, uniform convexity. Critical examples are given.


1978 ◽  
Vol 26 (3) ◽  
pp. 323-329 ◽  
Author(s):  
Hiroshi Onose

AbstractIn the last few years, the oscillatory behavior of functional differential equations has been investigated by many authors. But much less is known about the first-order functional differential equations. Recently, Tomaras (1975b) considered the functional differential equation and gave very interesting results on this problem, namely the sufficient conditions for its solutions to oscillate. The purpose of this paper is to extend and improve them, by examining the more general functional differential equation


Sign in / Sign up

Export Citation Format

Share Document