scholarly journals Cytomorphological and Cytochemical Identification of Microglia

2013 ◽  
Vol 2013 ◽  
pp. 1-10 ◽  
Author(s):  
Subhajit Das Sarma ◽  
Koushik Chatterjee ◽  
Himadri Dinda ◽  
Dhriti Chatterjee ◽  
Jayasri Das Sarma

Microglia is one of the major resident immune cells in the central nervous system and is considered to be the key cellular mediator of neuroinflammatory processes. Identification of different Microglial states of activation by morphologic means has been one of the major challenges in the field of neurobiology of diseases. Therefore, microglial biology demands techniques to identify differing stages of microglia in different neuroanatomic locations as well as understanding the role of Microglia in different Neurological diseases. This present study is aimed towards summarizing the literature and for understanding the progress made in different Cytomorphological and Cytochemical techniques of identifying Microglia. This study also review recently used Immunohistochemistry techniques, along with Ultrastructural studies determining different morphological features of resting to activated phagocytic Microglia in a viral induced experimental animal model of neuroinflammation. Results revealed that chronic Microglial activation is considered to be an important component of neuronal dysfunction, injury, and loss (and hence to disease progression). Thus, Microglial research with special emphasis on identification of different activation states of Microglia has gradually become significant.

2021 ◽  
Vol 13 ◽  
Author(s):  
Banglian Hu ◽  
Shengshun Duan ◽  
Ziwei Wang ◽  
Xin Li ◽  
Yuhang Zhou ◽  
...  

The colony-stimulating factor 1 receptor (CSF1R) is a key tyrosine kinase transmembrane receptor modulating microglial homeostasis, neurogenesis, and neuronal survival in the central nervous system (CNS). CSF1R, which can be proteolytically cleaved into a soluble ectodomain and an intracellular protein fragment, supports the survival of myeloid cells upon activation by two ligands, colony stimulating factor 1 and interleukin 34. CSF1R loss-of-function mutations are the major cause of adult-onset leukoencephalopathy with axonal spheroids and pigmented glia (ALSP) and its dysfunction has also been implicated in other neurodegenerative disorders including Alzheimer’s disease (AD). Here, we review the physiological functions of CSF1R in the CNS and its pathological effects in neurological disorders including ALSP, AD, frontotemporal dementia and multiple sclerosis. Understanding the pathophysiology of CSF1R is critical for developing targeted therapies for related neurological diseases.


2010 ◽  
Vol 21 (5-6) ◽  
pp. 394-408 ◽  
Author(s):  
Cláudia P. Figueiredo ◽  
Fabrício A. Pamplona ◽  
Tânia L. Mazzuco ◽  
Aderbal S. Aguiar ◽  
Roger Walz ◽  
...  

Vaccines ◽  
2020 ◽  
Vol 8 (3) ◽  
pp. 485 ◽  
Author(s):  
Sarah Stonedahl ◽  
Penny Clarke ◽  
Kenneth L. Tyler

Encephalitis resulting from viral infections is a major cause of hospitalization and death worldwide. West Nile Virus (WNV) is a substantial health concern as it is one of the leading causes of viral encephalitis in the United States today. WNV infiltrates the central nervous system (CNS), where it directly infects neurons and induces neuronal cell death, in part, via activation of caspase 3-mediated apoptosis. WNV infection also induces neuroinflammation characterized by activation of innate immune cells, including microglia and astrocytes, production of inflammatory cytokines, breakdown of the blood-brain barrier, and infiltration of peripheral leukocytes. Microglia are the resident immune cells of the brain and monitor the CNS for signs of injury or pathogens. Following infection with WNV, microglia exhibit a change in morphology consistent with activation and are associated with increased expression of proinflammatory cytokines. Recent research has focused on deciphering the role of microglia during WNV encephalitis. Microglia play a protective role during infections by limiting viral growth and reducing mortality in mice. However, it also appears that activated microglia are triggered by T cells to mediate synaptic elimination at late times during infection, which may contribute to long-term neurological deficits following a neuroinvasive WNV infection. This review will discuss the important role of microglia in the pathogenesis of a neuroinvasive WNV infection. Knowledge of the precise role of microglia during a WNV infection may lead to a greater ability to treat and manage WNV encephalitis.


2021 ◽  
Vol 12 ◽  
Author(s):  
Xinyan Wu ◽  
Hanhai Zeng ◽  
Lingxin Cai ◽  
Gao Chen

It has been reported that several immune cells can release chromatin and granular proteins into extracellular space in response to the stimulation, forming extracellular traps (ETs). The cells involved in the extracellular trap formation are recognized including neutropils, macrophages, basophils, eosinophils, and mast cells. With the development of research related to central nervous system, the role of ETs has been valued in neuroinflammation, blood–brain barrier, and other fields. Meanwhile, it has been found that microglial cells as the resident immune cells of the central nervous system can also release ETs, updating the original understanding. This review aims to clarify the role of the ETs in the central nervous system, especially in neuroinflammation and blood–brain barrier.


Biomedicines ◽  
2021 ◽  
Vol 9 (10) ◽  
pp. 1449
Author(s):  
Jae-Won Lee ◽  
Wanjoo Chun ◽  
Hee Jae Lee ◽  
Seong-Man Kim ◽  
Jae-Hong Min ◽  
...  

Microglia play an important role in the maintenance and neuroprotection of the central nervous system (CNS) by removing pathogens, damaged neurons, and plaques. Recent observations emphasize that the promotion and development of neurodegenerative diseases (NDs) are closely related to microglial activation. In this review, we summarize the contribution of microglial activation and its associated mechanisms in NDs, such as epilepsy, Alzheimer’s disease (AD), Parkinson’s disease (PD), and Huntington’s disease (HD), based on recent observations. This review also briefly introduces experimental animal models of epilepsy, AD, PD, and HD. Thus, this review provides a better understanding of microglial functions in the development of NDs, suggesting that microglial targeting could be an effective therapeutic strategy for these diseases.


2021 ◽  
Vol 15 ◽  
Author(s):  
Kendra L. Hanslik ◽  
Kaitlyn M. Marino ◽  
Tyler K. Ulland

In the central nervous system (CNS), glial cells, such as microglia and astrocytes, are normally associated with support roles including contributions to energy metabolism, synaptic plasticity, and ion homeostasis. In addition to providing support for neurons, microglia and astrocytes function as the resident immune cells in the brain. The glial function is impacted by multiple aspects including aging and local CNS changes caused by neurodegeneration. During aging, microglia and astrocytes display alterations in their homeostatic functions. For example, aged microglia and astrocytes exhibit impairments in the lysosome and mitochondrial function as well as in their regulation of synaptic plasticity. Recent evidence suggests that glia can also alter the pathology associated with many neurodegenerative disorders including Alzheimer’s disease (AD) and Parkinson’s disease (PD). Shifts in the microbiome can impact glial function as well. Disruptions in the microbiome can lead to aberrant microglial and astrocytic reactivity, which can contribute to an exacerbation of disease and neuronal dysfunction. In this review, we will discuss the normal physiological functions of microglia and astrocytes, summarize novel findings highlighting the role of glia in aging and neurodegenerative diseases, and examine the contribution of microglia and astrocytes to disease progression.


Author(s):  
Marius Schwabenland ◽  
Wolfgang Brück ◽  
Josef Priller ◽  
Christine Stadelmann ◽  
Hans Lassmann ◽  
...  

AbstractAs extremely sensitive immune cells, microglia act as versatile watchdogs of the central nervous system (CNS) that tightly control tissue homeostasis. Therefore, microglial activation is an early and easily detectable hallmark of virtually all neuropsychiatric, neuro-oncological, neurodevelopmental, neurodegenerative and neuroinflammatory diseases. The recent introduction of novel high-throughput technologies and several single-cell methodologies as well as advances in epigenetic analyses helped to identify new microglia expression profiles, enhancer-landscapes and local signaling cues that defined diverse previously unappreciated microglia states in the healthy and diseased CNS. Here, we give an overview on the recent developments in the field of microglia biology and provide a practical guide to analyze disease-associated microglia phenotypes in both the murine and human CNS, on several morphological and molecular levels. Finally, technical limitations, potential pitfalls and data misinterpretations are discussed as well.


2019 ◽  
Author(s):  
Chunsheng Ruan ◽  
Linlin Sun ◽  
Alexandra Kroshilina ◽  
Lien Beckers ◽  
Philip L. De Jager ◽  
...  

AbstractMicroglia are resident immune cells of the central nervous system (CNS). The exact role of microglia in the physiopathology of CNS disorders is not clear due to lack of tools to discriminate between CNS resident and infiltrated innate immune cells. Here, we present a novel reporter mouse model targeting a microglia-specific marker (TMEM119) for studying the function of microglia in health and disease. By placing a reporter cassette (GSG-3xFlag-P2A-tdTomato) between the coding sequence of exon 2 and 3’UTR of the Tmem119 gene using CRISPR/Cas9 technology, we generated a Tmem119-tdTomato knock-in mouse strain. Gene expression assay showed no difference of endogenous Tmem119 mRNA level in the CNS of Tmem119tdTomato/+ relative to control Wild-type mice. The cells expressing tdTomato-were recognized by immunofluorescence staining using commercially available anti-TMEM119 antibodies. Using immunofluorescence and flow cytometry techniques, tdTomato+ cells were detected throughout the CNS, but not in peripheral tissues of adult Tmem119tdTomato/+ mice. In addition, aging does not seem to influence TMEM119 expression as tdTomato+ cells were detectable in the CNS of older mice (300 and 540 days old). Further immunofluorescence characterization shows that the tdTomato+ cells were highly colocalized with Iba1+ cells (microglia and macrophages) in the brain, but not with NeuN- (neurons), GFAP- (astrocytes) or Olig2- (oligodendrocytes) labeled cells. Moreover, flow cytometry analysis of brain tissues of adult mice demonstrates that the majority of microglial CD45lowCD11b+ cells (96.6%) are tdTomato positive. Functionally, using a laser-induced injury model, we measured time-lapse activation of tdTomato-labeled microglia by transcranial two-photon microscopy in live Tmem119tdTomato/+ mice. Taken together, the Tmem119-tdTomato reporter mouse model will serve as a valuable tool to specifically study the role of microglia in health and disease.


2020 ◽  
Vol 27 (24) ◽  
pp. 4039-4061
Author(s):  
Daniele Bottai ◽  
Raffaella Adami ◽  
Rita Paroni ◽  
Riccardo Ghidoni

: Almost no neurological disease exists without microglial activation. Microglia has exert a pivotal role in the maintenance of the central nervous system and its response to external and internal insults. Microglia have traditionally been classified as, in the healthy central nervous system, “resting”, with branched morphology system and, as a response to disease, “activated”, with amoeboid morphology; as a response to diseases but this distinction is now outmoded. The most devastating disease that hits the brain is cancer, in particular glioblastoma. Glioblastoma multiforme is the most aggressive glioma with high invasiveness and little chance of being surgically removed. During tumor onset, many brain alterations are present and microglia have a major role because the tumor itself changes microglia from the pro-inflammatory state to the anti-inflammatory and protects the tumor from an immune intervention. : What are the determinants of these changes in the behavior of the microglia? In this review, we survey and discuss the role of sphingolipids in microglia activation in the progression of brain tumors, with a particular focus on glioblastoma.


Sign in / Sign up

Export Citation Format

Share Document