scholarly journals New Iterative Algorithm for Two Infinite Families of Multivalued Quasi-Nonexpansive Mappings in Uniformly Convex Banach Spaces

2013 ◽  
Vol 2013 ◽  
pp. 1-7 ◽  
Author(s):  
Fang Zhang ◽  
Huan Zhang ◽  
Yulong Zhang

We introduce a new iterative scheme for finding a common fixed point of two countable families of multivalued quasi-nonexpansive mappings and prove a weak convergence theorem under the suitable control conditions in a uniformly convex Banach space. We also give a new proof method to the iteration in the paper of Abbas et al. (2011).

2019 ◽  
Vol 2019 ◽  
pp. 1-15 ◽  
Author(s):  
M. De la Sen ◽  
Mujahid Abbas

This paper proposes a generalized modified iterative scheme where the composed self-mapping driving can have distinct step-dependent composition order in both the auxiliary iterative equation and the main one integrated in Ishikawa’s scheme. The self-mapping which drives the iterative scheme is a perturbed 2-cyclic one on the union of two sequences of nonempty closed subsets Ann=0∞ and Bnn=0∞ of a uniformly convex Banach space. As a consequence of the perturbation, such a driving self-mapping can lose its cyclic contractive nature along the transients of the iterative process. These sequences can be, in general, distinct of the initial subsets due to either computational or unmodeled perturbations associated with the self-mapping calculations through the iterative process. It is assumed that the set-theoretic limits below of the sequences of sets Ann=0∞ and Bnn=0∞ exist. The existence of fixed best proximity points in the set-theoretic limits of the sequences to which the iterated sequences converge is investigated in the case that the cyclic disposal exists under the asymptotic removal of the perturbations or under its convergence of the driving self-mapping to a limit contractive cyclic structure.


2020 ◽  
Vol 9 (3) ◽  
pp. 681-690
Author(s):  
Khairul Saleh ◽  
Hafiz Fukhar-ud-din

Abstract In this work, we propose an iterative scheme to approach common fixed point(s) of a finite family of generalized multi-valued nonexpansive mappings in a CAT(0) space. We establish and prove convergence theorems for the algorithm. The results are new and interesting in the theory of $$CAT\left( 0\right) $$ C A T 0 spaces and are the analogues of corresponding ones in uniformly convex Banach spaces and Hilbert spaces.


1991 ◽  
Vol 43 (1) ◽  
pp. 153-159 ◽  
Author(s):  
J. Schu

Let T be an asymptotically nonexpansive self-mapping of a closed bounded and convex subset of a uniformly convex Banach space which satisfies Opial's condition. It is shown that, under certain assumptions, the sequence given by xn+1 = αnTn(xn) + (1 - αn)xn converges weakly to some fixed point of T. In arbitrary uniformly convex Banach spaces similar results are obtained concerning the strong convergence of (xn) to a fixed point of T, provided T possesses a compact iterate or satisfies a Frum-Ketkov condition of the fourth kind.


2017 ◽  
Vol 33 (3) ◽  
pp. 327-334
Author(s):  
ABDUL RAHIM KHAN ◽  
◽  
HAFIZ FUKHAR-UD-DIN ◽  
NUSRAT YASMIN ◽  
◽  
...  

In the context of a hyperbolic space, we introduce and study convergence of an implicit iterative scheme of a finite family of asymptotically nonexpansive mappings without convergence condition. The results presented substantially improve and extend several well-known resullts in uniformly convex Banach spaces.


2005 ◽  
Vol 2005 (11) ◽  
pp. 1685-1692 ◽  
Author(s):  
Somyot Plubtieng ◽  
Rabian Wangkeeree

Suppose thatCis a nonempty closed convex subset of a real uniformly convex Banach spaceX. LetT:C→Cbe an asymptotically quasi-nonexpansive mapping. In this paper, we introduce the three-step iterative scheme for such map with error members. Moreover, we prove that ifTis uniformlyL-Lipschitzian and completely continuous, then the iterative scheme converges strongly to some fixed point ofT.


2014 ◽  
Vol 2014 ◽  
pp. 1-9
Author(s):  
Jinzuo Chen ◽  
Dingping Wu ◽  
Caifen Zhang

We introduce the modified iterations of Mann's type for nonexpansive mappings and asymptotically nonexpansive mappings to have the strong convergence in a uniformly convex Banach space. We study approximation of common fixed point of asymptotically nonexpansive mappings in Banach space by using a new iterative scheme. Applications to the accretive operators are also included.


2020 ◽  
Vol 2020 ◽  
pp. 1-9 ◽  
Author(s):  
Shanza Hassan ◽  
Manuel De la Sen ◽  
Praveen Agarwal ◽  
Qasim Ali ◽  
Azhar Hussain

The purpose of this paper is to introduce a new four-step iteration scheme for approximation of fixed point of the nonexpansive mappings named as S∗-iteration scheme which is faster than Picard, Mann, Ishikawa, Noor, Agarwal, Abbas, Thakur, and Ullah iteration schemes. We show the stability of our proposed scheme. We present a numerical example to show that our iteration scheme is faster than the aforementioned schemes. Moreover, we present some weak and strong convergence theorems for Suzuki’s generalized nonexpansive mappings in the framework of uniformly convex Banach spaces. Our results extend, improve, and unify many existing results in the literature.


2012 ◽  
Vol 2012 ◽  
pp. 1-6 ◽  
Author(s):  
Aunyarat Bunyawat ◽  
Suthep Suantai

We introduce an iterative method for finding a common fixed point of a countable family of multivalued quasi-nonexpansive mapping{Ti}in a uniformly convex Banach space. We prove that under certain control conditions, the iterative sequence generated by our method is an approximating fixed point sequence of eachTi. Some strong convergence theorems of the proposed method are also obtained for the following cases: allTiare continuous and one ofTiis hemicompact, and the domainKis compact.


Filomat ◽  
2021 ◽  
Vol 35 (4) ◽  
pp. 1359-1368
Author(s):  
Kifayat Ullah ◽  
Junaid Ahmad ◽  
Muhammad Khan ◽  
Naseer Muhammad

In this paper, we study M-iterative scheme in the new context of multi-valued generalized ?-nonexpansive mappings. A uniformly convex Banach space is used as underlying setting for our approach. We also provide a new example of generalized ?-nonexpasive mappings. We connect M iterative scheme and other well known schemes with this example, to show the numerical efficiency of our results. Our results improve and extend many existing results in the current literature.


2021 ◽  
Vol 73 (6) ◽  
pp. 738-748
Author(s):  
J. Ali ◽  
I. Uddin

UDC 517.9 Phuengrattana and Suantai [J. Comput. and Appl. Math., <strong>235</strong>, 3006 – 3014 (2011)] introduced an iteration scheme and they named this iteration as SP-iteration. In this paper, we study the convergence behaviour of SP-iteration scheme for the class of generalized nonexpansive mappings. One weak convergence theorem and two strong convergence theorems in uniformly convex Banach spaces are obtained. We also furnish a numerical example in support of our main result. In process, our results generalize and improve many existing results in the literature.


Sign in / Sign up

Export Citation Format

Share Document