scholarly journals A New Iterative Scheme of Modified Mann Iteration in Banach Space

2014 ◽  
Vol 2014 ◽  
pp. 1-9
Author(s):  
Jinzuo Chen ◽  
Dingping Wu ◽  
Caifen Zhang

We introduce the modified iterations of Mann's type for nonexpansive mappings and asymptotically nonexpansive mappings to have the strong convergence in a uniformly convex Banach space. We study approximation of common fixed point of asymptotically nonexpansive mappings in Banach space by using a new iterative scheme. Applications to the accretive operators are also included.

1999 ◽  
Vol 22 (1) ◽  
pp. 217-220
Author(s):  
B. K. Sharma ◽  
B. S. Thakur ◽  
Y. J. Cho

In this paper, we prove a convergence theorem for Passty type asymptotically nonexpansive mappings in a uniformly convex Banach space with Fréchet-differentiable norm.


1991 ◽  
Vol 43 (1) ◽  
pp. 153-159 ◽  
Author(s):  
J. Schu

Let T be an asymptotically nonexpansive self-mapping of a closed bounded and convex subset of a uniformly convex Banach space which satisfies Opial's condition. It is shown that, under certain assumptions, the sequence given by xn+1 = αnTn(xn) + (1 - αn)xn converges weakly to some fixed point of T. In arbitrary uniformly convex Banach spaces similar results are obtained concerning the strong convergence of (xn) to a fixed point of T, provided T possesses a compact iterate or satisfies a Frum-Ketkov condition of the fourth kind.


2001 ◽  
Vol 27 (11) ◽  
pp. 653-662 ◽  
Author(s):  
Jui-Chi Huang

LetEbe a uniformly convex Banach space,Ca nonempty closed convex subset ofE. In this paper, we introduce an iteration scheme with errors in the sense of Xu (1998) generated by{Tj:C→C}j=1ras follows:Un(j)=an(j)I+bn(j)TjnUn(j−1)+cn(j)un(j),j=1,2,…,r,x1∈C,xn+1=an(r)xn+bn(r)TrnUn(r−1)xn+cn(r)un(r),n≥1, whereUn(0):=I,Ithe identity map; and{un(j)}are bounded sequences inC; and{an(j)},{bn(j)}, and{cn(j)}are suitable sequences in[0,1]. We first consider the behaviour of iteration scheme above for a finite family of asymptotically nonexpansive mappings. Then we generalize theorems of Schu and Rhoades.


2017 ◽  
Vol 33 (3) ◽  
pp. 327-334
Author(s):  
ABDUL RAHIM KHAN ◽  
◽  
HAFIZ FUKHAR-UD-DIN ◽  
NUSRAT YASMIN ◽  
◽  
...  

In the context of a hyperbolic space, we introduce and study convergence of an implicit iterative scheme of a finite family of asymptotically nonexpansive mappings without convergence condition. The results presented substantially improve and extend several well-known resullts in uniformly convex Banach spaces.


2005 ◽  
Vol 2005 (11) ◽  
pp. 1685-1692 ◽  
Author(s):  
Somyot Plubtieng ◽  
Rabian Wangkeeree

Suppose thatCis a nonempty closed convex subset of a real uniformly convex Banach spaceX. LetT:C→Cbe an asymptotically quasi-nonexpansive mapping. In this paper, we introduce the three-step iterative scheme for such map with error members. Moreover, we prove that ifTis uniformlyL-Lipschitzian and completely continuous, then the iterative scheme converges strongly to some fixed point ofT.


Author(s):  
Manfred Krüppel ◽  
Jaroslaw Górnicki

The purpose of this paper is to prove the following (nonlinear) mean ergodic theorem: Let E be a uniformly convex Banach space, let C be a nonempty bounded closed convex subset of E and let T: C → C be an asymptotically nonexpansive mapping. Ifexists uniformly in r = 0, 1, 2,…, then the sequence {Tnx} is strongly almost-convergent to a fixed point y of T, that is,uniformly in i = 0, 1, 2, ….


2021 ◽  
Vol 2021 ◽  
pp. 1-8
Author(s):  
Buthinah A. Bin Dehaish ◽  
Rawan K. Alharbi

The present paper seeks to illustrate approximation theorems to the fixed point for generalized α -nonexpansive mapping with the Mann iteration process. Furthermore, the same results are established with the Ishikawa iteration process in the uniformly convex Banach space setting. The presented results expand and refine many of the recently reported results in the literature.


2013 ◽  
Vol 2013 ◽  
pp. 1-7 ◽  
Author(s):  
Fang Zhang ◽  
Huan Zhang ◽  
Yulong Zhang

We introduce a new iterative scheme for finding a common fixed point of two countable families of multivalued quasi-nonexpansive mappings and prove a weak convergence theorem under the suitable control conditions in a uniformly convex Banach space. We also give a new proof method to the iteration in the paper of Abbas et al. (2011).


2019 ◽  
Vol 20 (1) ◽  
pp. 119
Author(s):  
M. Radhakrishnan ◽  
S. Rajesh

<p>Kirk introduced the notion of pointwise eventually asymptotically non-expansive mappings and proved that uniformly convex Banach spaces have the fixed point property for pointwise eventually asymptotically non expansive maps. Further, Kirk raised the following question: “Does a Banach space X have the fixed point property for pointwise eventually asymptotically nonexpansive mappings when ever X has the fixed point property for nonexpansive mappings?”. In this paper, we prove that a Banach space X has the fixed point property for pointwise eventually asymptotically nonexpansive maps if X  has uniform normal structure or X is uniformly convex in every direction with the Maluta constant D(X) &lt; 1. Also, we study the asymptotic behavior of the sequence {T<sup>n</sup>x} for a pointwise eventually asymptotically nonexpansive map T defined on a nonempty weakly compact convex subset K of a Banach space X whenever X satisfies the uniform Opial condition or X has a weakly continuous duality map.</p>


2014 ◽  
Vol 2014 ◽  
pp. 1-6
Author(s):  
Yuanheng Wang

In the framework of a real Banach space with uniformly Gateaux differentiable norm, some new viscosity iterative sequences{xn}are introduced for an infinite family of asymptotically nonexpansive mappingsTii=1∞in this paper. Under some appropriate conditions, we prove that the iterative sequences{xn}converge strongly to a common fixed point of the mappingsTii=1∞, which is also a solution of a variational inequality. Our results extend and improve some recent results of other authors.


Sign in / Sign up

Export Citation Format

Share Document