scholarly journals A New Characterization of Generalized Weighted Composition Operators from the Bloch Space into the Zygmund Space

2013 ◽  
Vol 2013 ◽  
pp. 1-6 ◽  
Author(s):  
Hao Li ◽  
Xiaohong Fu

A new criterion for the boundedness and the compactness of the generalized weighted composition operators from the Bloch space into the Zygmund space is given in this paper.

2013 ◽  
Vol 2013 ◽  
pp. 1-9 ◽  
Author(s):  
Flavia Colonna ◽  
Songxiao Li

We provide several characterizations of the bounded and the compact weighted composition operators from the Bloch space and the analytic Besov spaces (with ) into the Zygmund space . As a special case, we show that the bounded (resp., compact) composition operators from , , and to coincide. In addition, the boundedness and the compactness of the composition operator can be characterized in terms of the boundedness (resp., convergence to 0, under the boundedness assumption of the operator) of the Zygmund norm of the powers of the symbol.


Filomat ◽  
2018 ◽  
Vol 32 (2) ◽  
pp. 681-691 ◽  
Author(s):  
Qinghua Hu ◽  
Songxiao Li

In this paper, we give some estimates for the essential norm of weighted composition operators from the Bloch space and the Zygmund space to the Bloch space.


Filomat ◽  
2016 ◽  
Vol 30 (14) ◽  
pp. 3867-3874
Author(s):  
Xiangling Zhu

In this paper, we give three different characterizations for the boundedness and compactness of generalized weighted composition operators from the space of bounded analytic function to the logarithmic Bloch space.


2015 ◽  
Vol 2015 ◽  
pp. 1-5 ◽  
Author(s):  
Liankuo Zhao

We give a complete characterization of bounded invertible weighted composition operators on the Fock space ofCN.


Sign in / Sign up

Export Citation Format

Share Document