scholarly journals Bifurcations of Nontwisted Heteroclinic Loop with Resonant Eigenvalues

2014 ◽  
Vol 2014 ◽  
pp. 1-8 ◽  
Author(s):  
Yinlai Jin ◽  
Xiaowei Zhu ◽  
Zheng Guo ◽  
Han Xu ◽  
Liqun Zhang ◽  
...  

By using the foundational solutions of the linear variational equation of the unperturbed system along the heteroclinic orbits to establish the local coordinate systems in the small tubular neighborhoods of the heteroclinic orbits, we study the bifurcation problems of nontwisted heteroclinic loop with resonant eigenvalues. The existence, numbers, and existence regions of 1-heteroclinic loop, 1-homoclinic loop, 1-periodic orbit, 2-fold 1-periodic orbit, and two 1-periodic orbits are obtained. Meanwhile, we give the corresponding bifurcation surfaces.

2013 ◽  
Vol 2013 ◽  
pp. 1-9 ◽  
Author(s):  
Yinlai Jin ◽  
Feng Li ◽  
Han Xu ◽  
Jing Li ◽  
Liqun Zhang ◽  
...  

By using the foundational solutions of the linear variational equation of the unperturbed system along the homoclinic orbit as the local current coordinates system of the system in the small neighborhood of the homoclinic orbit, we discuss the bifurcation problems of nondegenerated homoclinic loops. Under the nonresonant condition, existence, uniqueness, and incoexistence of 1-homoclinic loop and 1-periodic orbit, the inexistence ofk-homoclinic loop andk-periodic orbit is obtained. Under the resonant condition, we study the existence of 1-homoclinic loop, 1-periodic orbit, 2-fold 1-periodic orbit, and two 1-periodic orbits; the coexistence of 1-homoclinic loop and 1-periodic orbit. Moreover, we give the corresponding existence fields and bifurcation surfaces. At last, we study the stability of the homoclinic loop for the two cases of non-resonant and resonant, and we obtain the corresponding criterions.


2017 ◽  
Vol 27 (08) ◽  
pp. 1750120
Author(s):  
Yinlai Jin ◽  
Suoling Yang ◽  
Yuanyuan Liu ◽  
Dandan Xie ◽  
Nana Zhang

The bifurcation problems of twisted heteroclinic loop with two hyperbolic critical points are studied for the case [Formula: see text], [Formula: see text], [Formula: see text], where [Formula: see text] and [Formula: see text] are the pair of principal eigenvalues of unperturbed system at the critical point [Formula: see text], [Formula: see text]. Under the transversal conditions, the authors obtained some results of the existence and the number of 1-homoclinic loop, 1-periodic orbit, double 1-periodic orbit, 2-homoclinic loop and 2-periodic orbit. Moreover, the relative bifurcation surfaces and the existence regions are given, and the corresponding bifurcation graphs are drawn.


2018 ◽  
Vol 28 (02) ◽  
pp. 1850026
Author(s):  
Yuanyuan Liu ◽  
Feng Li ◽  
Pei Dang

We consider the bifurcation in a class of piecewise polynomial systems with piecewise polynomial perturbations. The corresponding unperturbed system is supposed to possess an elementary or nilpotent critical point. First, we present 17 cases of possible phase portraits and conditions with at least one nonsmooth periodic orbit for the unperturbed system. Then we focus on the two specific cases with two heteroclinic orbits and investigate the number of limit cycles near the loop by means of the first-order Melnikov function, respectively. Finally, we take a quartic piecewise system with quintic piecewise polynomial perturbation as an example and obtain that there can exist ten limit cycles near the heteroclinic loop.


2011 ◽  
Vol 21 (01) ◽  
pp. 255-273 ◽  
Author(s):  
SHULIANG SHUI ◽  
JINGJING LI ◽  
XUYANG ZHANG

Heteroclinic bifurcations in four-dimensional vector fields are investigated by setting up local coordinates near a heteroclinic loop. This heteroclinic loop consists of two principal heteroclinic orbits, but there is one stable foliation that involves an inclination flip. The existence, nonexistence, coexistence and uniqueness of the 1-heteroclinic loop, 1-homoclinic orbit, and 1-periodic orbit are studied. Also, the nonexistence, existence of the 2-homoclinic and 2-periodic orbit are demonstrated.


2008 ◽  
Vol 18 (04) ◽  
pp. 1069-1083 ◽  
Author(s):  
FENGJIE GENG ◽  
DAN LIU ◽  
DEMING ZHU

The bifurcations of generic heteroclinic loop with one nonhyperbolic equilibrium p1and one hyperbolic saddle p2are investigated, where p1is assumed to undergo transcritical bifurcation. Firstly, we discuss bifurcations of heteroclinic loop when transcritical bifurcation does not happen, the persistence of heteroclinic loop, the existence of homoclinic loop connecting p1(resp. p2) and the coexistence of one homoclinic loop and one periodic orbit are established. Secondly, we analyze bifurcations of heteroclinic loop accompanied by transcritical bifurcation, namely, nonhyperbolic equilibrium p1splits into two hyperbolic saddles [Formula: see text] and [Formula: see text], a heteroclinic loop connecting [Formula: see text] and p2, homoclinic loop with [Formula: see text] (resp. p2) and heteroclinic orbit joining [Formula: see text] and [Formula: see text] (resp. [Formula: see text] and p2; p2and [Formula: see text]) are found. The results achieved here can be extended to higher dimensional systems.


2012 ◽  
Vol 22 (11) ◽  
pp. 1250278 ◽  
Author(s):  
XINGBO LIU ◽  
ZHENZHEN WANG ◽  
DEMING ZHU

In this paper, heteroclinic loop bifurcations with double orbit flips are investigated in four-dimensional vector fields. We obtain the bifurcation equations by setting up a local coordinate system near the rough heteroclinic orbit and establishing the Poincaré map. By means of the bifurcation equations, we investigate the existence, coexistence and noncoexistence of periodic orbit, homoclinic loop and heteroclinic loop under some nongeneric conditions. The approximate expressions of corresponding bifurcation curves (or surfaces) are also given. An example of application is also given to demonstrate the existence of the heteroclinic loop with double orbit flips.


2010 ◽  
Vol 20 (02) ◽  
pp. 491-508 ◽  
Author(s):  
QIUYING LU ◽  
ZHIQIN QIAO ◽  
TIANSI ZHANG ◽  
DEMING ZHU

The local moving frame approach is employed to study the bifurcation of a degenerate heterodimensional cycle with orbit-flip in its nontransversal orbit. Under some generic hypotheses, we provide the conditions for the existence, uniqueness and noncoexistence of the homoclinic orbit, heteroclinic orbit and periodic orbit. And we also present the coexistence conditions for the homoclinic orbit and the periodic orbit. But it is impossible for the coexistence of the periodic orbit and the persistent heterodimensional cycle or the coexistence of the homoclinic loop and the persistent heterodimensional cycle. Moreover, the double and triple periodic orbit bifurcation surfaces are established as well. Based on the bifurcation analysis, the bifurcation surfaces and the existence regions are located. An example of application is also given to demonstrate our main results.


2016 ◽  
Vol 26 (03) ◽  
pp. 1650049 ◽  
Author(s):  
Cui-Ping Cheng ◽  
Wan-Tong Li ◽  
Zhi-Cheng Wang ◽  
Shenzhou Zheng

This paper is concerned with the existence of fast traveling waves connecting an equilibrium and a periodic orbit in a delayed population model with stage structure on a two-dimensional spatial lattice, under the assumption that the corresponding ODEs have heteroclinic orbits connecting an equilibrium point and a periodic solution. In this work, we rewrite the mixed functional differential equation as an integral equation in a Banach space and analyze the corresponding linear operator. Our approach eventually reduces a singular perturbation problem to a regular perturbation problem. The existence of traveling wave solution therefore is obtained by using the Liapunov–Schmidt method and implicit function theorem.


2004 ◽  
Vol 14 (08) ◽  
pp. 2905-2914 ◽  
Author(s):  
YUHAI WU ◽  
MAOAN HAN ◽  
XIANFENG CHEN

The Hopf bifurcation, saddle connection loop bifurcation and Poincaré bifurcation of the generalized Rayleigh–Liénard oscillator Ẍ+aX+2bX3+ε(c3+c2X2+c1X4+c4Ẋ2)Ẋ=0 are studied. It is proved that for the case a<0, b>0 the system has at most six limit cycles bifurcated from Hopf bifurcation or has at least seven limit cycles bifurcated from the double homoclinic loop. For the case a>0, b<0 the system has at most three limit cycles bifurcated from Hopf bifurcation or has three limit cycles bifurcated from the heteroclinic loop.


2014 ◽  
Vol 2014 ◽  
pp. 1-9
Author(s):  
Fengjie Geng ◽  
Junfang Zhao

The bifurcations of heteroclinic loop with one nonhyperbolic equilibrium and one hyperbolic saddle are considered, where the nonhyperbolic equilibrium is supposed to undergo a transcritical bifurcation; moreover, the heteroclinic loop has an orbit flip and an inclination flip. When the nonhyperbolic equilibrium does not undergo a transcritical bifurcation, we establish the coexistence and noncoexistence of the periodic orbits and homoclinic orbits. While the nonhyperbolic equilibrium undergoes the transcritical bifurcation, we obtain the noncoexistence of the periodic orbits and homoclinic orbits and the existence of two or three heteroclinic orbits.


Sign in / Sign up

Export Citation Format

Share Document