scholarly journals Oscillation criteria of certain fractional partial differential equations

2019 ◽  
Vol 2019 (1) ◽  
Author(s):  
Di Xu ◽  
Fanwei Meng

Abstract In this article, we regard the generalized Riccati transformation and Riemann–Liouville fractional derivatives as the principal instrument. In the proof, we take advantage of the fractional derivatives technique with the addition of interval segmentation techniques, which enlarge the manners to demonstrate the sufficient conditions for oscillation criteria of certain fractional partial differential equations.

2014 ◽  
Vol 2014 ◽  
pp. 1-8 ◽  
Author(s):  
Asma Ali Elbeleze ◽  
Adem Kılıçman ◽  
Bachok M. Taib

We implement relatively analytical methods, the homotopy perturbation method and the variational iteration method, for solving singular fractional partial differential equations of fractional order. The process of the methods which produce solutions in terms of convergent series is explained. The fractional derivatives are described in Caputo sense. Some examples are given to show the accurate and easily implemented of these methods even with the presence of singularities.


2019 ◽  
Vol 13 (1) ◽  
pp. 325-345
Author(s):  
G.E. Chatzarakis ◽  
K. Logaarasi ◽  
T. Raja ◽  
V. Sadhasivam

In this paper, we present some sufficient conditions for the oscillation of all solutions of forced impulsive delay conformable partial differential equations. We consider two factors, namely impulse and delay that jointly affect the interval qualitative properties of the solutions of those equations. The results obtained in this paper extend and generalize some of the known results for forced impulsive conformable partial differential equations. An example illustrating the results is also given.


2015 ◽  
Vol 2015 ◽  
pp. 1-6 ◽  
Author(s):  
Wei Nian Li

Sufficient conditions are established for the forced oscillation of fractional partial differential equations with damping term of the form(∂/∂t)(D+,tαu(x,t))+p(t)D+,tαu(x,t)=a(t)Δu(x,t)-q(x,t)u(x,t)+f(x,t),(x,t)∈Ω×R+≡G, with one of the two following boundary conditions:∂u(x,t)/∂N=ψ(x,t),  (x,t)∈∂Ω×R+oru(x,t)=0,  (x,t)∈∂Ω×R+, whereΩis a bounded domain inRnwith a piecewise smooth boundary,∂Ω,R+=[0,∞),  α∈(0,1)is a constant,D+,tαu(x,t)is the Riemann-Liouville fractional derivative of orderαofuwith respect tot,Δis the Laplacian inRn,Nis the unit exterior normal vector to∂Ω, andψ(x,t)is a continuous function on∂Ω×R+. The main results are illustrated by some examples.


Mathematics ◽  
2019 ◽  
Vol 7 (6) ◽  
pp. 505 ◽  
Author(s):  
Rasool Shah ◽  
Hassan Khan ◽  
Poom Kumam ◽  
Muhammad Arif

The Kortweg–de Vries equations play an important role to model different physical phenomena in nature. In this research article, we have investigated the analytical solution to system of nonlinear fractional Kortweg–de Vries, partial differential equations. The Caputo operator is used to define fractional derivatives. Some illustrative examples are considered to check the validity and accuracy of the proposed method. The obtained results have shown the best agreement with the exact solution for the problems. The solution graphs are in full support to confirm the authenticity of the present method.


2011 ◽  
Vol 16 (4) ◽  
pp. 403-414 ◽  
Author(s):  
Hüseyin Koçak ◽  
Ahmet Yıldırım

In this paper, a new iterative method (NIM) is used to obtain the exact solutions of some nonlinear time-fractional partial differential equations. The fractional derivatives are described in the Caputo sense. The method provides a convergent series with easily computable components in comparison with other existing methods.


Author(s):  
Sangita Choudhary ◽  
Varsha Daftardar-Gejji

In the present paper, invariant subspace method has been extended for solving systems of multi-term fractional partial differential equations (FPDEs) involving both time and space fractional derivatives. Further, the method has also been employed for solving multi-term fractional PDEs in [Formula: see text] dimensions. A diverse set of examples is solved to illustrate the method.


2015 ◽  
Vol 2015 ◽  
pp. 1-10 ◽  
Author(s):  
Sertan Alkan ◽  
Aydin Secer

We employ the sinc-Galerkin method to obtain approximate solutions of space-fractional order partial differential equations (FPDEs) with variable coefficients. The fractional derivatives are used in the Caputo sense. The method is applied to three different problems and the obtained solutions are compared with the exact solutions of the problems. These comparisons demonstrate that the sinc-Galerkin method is a very efficient tool in solving space-fractional partial differential equations.


Sign in / Sign up

Export Citation Format

Share Document