scholarly journals Some Properties of Canonical Dual K-Bessel Sequences for Parseval K-Frames

2019 ◽  
Vol 2019 ◽  
pp. 1-6
Author(s):  
Zhong-Qi Xiang

The concept of canonical dual K-Bessel sequences was recently introduced, a deep study of which is helpful in further developing and enriching the duality theory of K-frames. In this paper we pay attention to investigating the structure of the canonical dual K-Bessel sequence of a Parseval K-frame and some derived properties. We present the exact form of the canonical dual K-Bessel sequence of a Parseval K-frame, and a necessary and sufficient condition for a dual K-Bessel sequence of a given Parseval K-frame to be the canonical dual K-Bessel sequence is investigated. We also give a necessary and sufficient condition for a Parseval K-frame to have a unique dual K-Bessel sequence and equivalently characterize the condition under which the canonical dual K-Bessel sequence of a Parseval K-frame admits a unique dual K⁎-Bessel sequence. Finally, we obtain a minimal norm property on expansion coefficients of elements in the range of K resulting from the canonical dual K-Bessel sequence of a Parseval K-frame.

Author(s):  
P. K. JAIN ◽  
S. K. KAUSHIK ◽  
NISHA GUPTA

Banach frame systems in Banach spaces have been defined and studied. A sufficient condition under which a Banach space, having a Banach frame, has a Banach frame system has been given. Also, it has been proved that a Banach space E is separable if and only if E* has a Banach frame ({φn},T) with each φn weak*-continuous. Finally, a necessary and sufficient condition for a Banach Bessel sequence to be a Banach frame has been given.


Author(s):  
Khole Timothy Poumai ◽  
Shah Jahan

Gavruta [L. Gavruta, Frames for operators, Appl. Comput. Harmon. Anal. 32 (2012) 139–144] introduced the notion of [Formula: see text]-frame and atomic system for an operator [Formula: see text] in Hilbert spaces. We extend these notions to Banach spaces and obtain various new results. A necessary and sufficient condition for the existence of an atomic system for an operator [Formula: see text] in a Banach space is given. Also, a characterization for the family of local atoms of subspaces of Banach spaces has been given. Further, we give methods to construct an atomic system for an operator [Formula: see text] from a given Bessel sequence and an [Formula: see text]-Bessel sequence. Finally, a result related to stability of atomic system for an operator [Formula: see text] in a Banach space has been given.


2003 ◽  
Vol 17 (3) ◽  
pp. 257-266 ◽  
Author(s):  
Mark H. Taylor ◽  
F. Todd DeZoort ◽  
Edward Munn ◽  
Martha Wetterhall Thomas

This paper introduces an auditor reliability framework that repositions the role of auditor independence in the accounting profession. The framework is motivated in part by widespread confusion about independence and the auditing profession's continuing problems with managing independence and inspiring public confidence. We use philosophical, theoretical, and professional arguments to argue that the public interest will be best served by reprioritizing professional and ethical objectives to establish reliability in fact and appearance as the cornerstone of the profession, rather than relationship-based independence in fact and appearance. This revised framework requires three foundation elements to control subjectivity in auditors' judgments and decisions: independence, integrity, and expertise. Each element is a necessary but not sufficient condition for maximizing objectivity. Objectivity, in turn, is a necessary and sufficient condition for achieving and maintaining reliability in fact and appearance.


Author(s):  
Thomas Sinclair

The Kantian account of political authority holds that the state is a necessary and sufficient condition of our freedom. We cannot be free outside the state, Kantians argue, because any attempt to have the “acquired rights” necessary for our freedom implicates us in objectionable relations of dependence on private judgment. Only in the state can this problem be overcome. But it is not clear how mere institutions could make the necessary difference, and contemporary Kantians have not offered compelling explanations. A detailed analysis is presented of the problems Kantians identify with the state of nature and the objections they face in claiming that the state overcomes them. A response is sketched on behalf of Kantians. The key idea is that under state institutions, a person can make claims of acquired right without presupposing that she is by nature exceptional in her capacity to bind others.


Physics ◽  
2021 ◽  
Vol 3 (2) ◽  
pp. 352-366
Author(s):  
Thomas Berry ◽  
Matt Visser

In this paper, Lorentz boosts and Wigner rotations are considered from a (complexified) quaternionic point of view. It is demonstrated that, for a suitably defined self-adjoint complex quaternionic 4-velocity, pure Lorentz boosts can be phrased in terms of the quaternion square root of the relative 4-velocity connecting the two inertial frames. Straightforward computations then lead to quite explicit and relatively simple algebraic formulae for the composition of 4-velocities and the Wigner angle. The Wigner rotation is subsequently related to the generic non-associativity of the composition of three 4-velocities, and a necessary and sufficient condition is developed for the associativity to hold. Finally, the authors relate the composition of 4-velocities to a specific implementation of the Baker–Campbell–Hausdorff theorem. As compared to ordinary 4×4 Lorentz transformations, the use of self-adjoint complexified quaternions leads, from a computational view, to storage savings and more rapid computations, and from a pedagogical view to to relatively simple and explicit formulae.


Sign in / Sign up

Export Citation Format

Share Document