scholarly journals On a Characterization of Convergence in Banach Spaces with a Schauder Basis

Author(s):  
Marat V. Markin ◽  
Olivia B. Soghomonian

We extend the well-known characterizations of convergence in the spaces l p ( 1 ≤ p < ∞ ) of p -summable sequence and c 0 of vanishing sequences to a general characterization of convergence in a Banach space with a Schauder basis and obtain as instant corollaries characterizations of convergence in an infinite-dimensional separable Hilbert space and the space c of convergent sequences.“The method in the present paper is abstract and is phrased in terms of Banach spaces, linear operators, and so on. This has the advantage of greater simplicity in proof and greater generality in applications.” Jacob T. Schwartz

1974 ◽  
Vol 26 (3) ◽  
pp. 565-575 ◽  
Author(s):  
W. E. Longstaff

A collection of subspaces of a Hilbert space is called a nest if it is totally ordered by inclusion. The set of all bounded linear operators leaving invariant each member of a given nest forms a weakly-closed algebra, called a nest algebra. Nest algebras were introduced by J. R. Ringrose in [9]. The present paper is concerned with generating nest algebras as weakly-closed algebras, and in particular with the following question which was first raised by H. Radjavi and P. Rosenthal in [8], viz: Is every nest algebra on a separable Hilbert space generated, as a weakly-closed algebra, by two operators? That the answer to this question is affirmative is proved by first reducing the problem using the main result of [8] and then by using a characterization of nests due to J. A. Erdos [2].


2019 ◽  
Vol 62 (4) ◽  
pp. 913-924
Author(s):  
H. Carrión ◽  
P. Galindo ◽  
M. L. Lourenço

AbstractWe present an infinite-dimensional version of Cartan's theorem concerning the existence of a holomorphic inverse of a given holomorphic self-map of a bounded convex open subset of a dual Banach space. No separability is assumed, contrary to previous analogous results. The main assumption is that the derivative operator is power bounded, and which we, in turn, show to be diagonalizable in some cases, like the separable Hilbert space.


2011 ◽  
Vol 53 (3) ◽  
pp. 443-449 ◽  
Author(s):  
ANTONÍN SLAVÍK

AbstractThis paper is inspired by a counter example of J. Kurzweil published in [5], whose intention was to demonstrate that a certain property of linear operators on finite-dimensional spaces need not be preserved in infinite dimension. We obtain a stronger result, which says that no infinite-dimensional Banach space can have the given property. Along the way, we will also derive an interesting proposition related to Dvoretzky's theorem.


1989 ◽  
Vol 32 (4) ◽  
pp. 450-458
Author(s):  
Takemitsu Kiyosawa

AbstractLet K be a non-trivial complete non-Archimedean valued field and let E be an infinite-dimensional Banach space over K. Some of the main results are:(1) K is spherically complete if and only if every weakly convergent sequence in l∞ is norm-convergent.(2) If the valuation of K is dense, then C0 is complemented in E if and only if C(E,c0) is n o t complemented in L(E,c0), where L(E,c0) is the space of all continuous linear operators from E to c0 and C(E,c0) is the subspace of L(E, c0) consisting of all compact linear operators.


Author(s):  
Mingze Yang

Using ideas of Pisier, the concept of complete positivity is generalized in a different direction in this paper, where the Hilbert spaceℋis replaced with a Banach space and its conjugate linear dual. The extreme point results of Arveson are reformulated in this more general setting.


1979 ◽  
Vol 31 (3) ◽  
pp. 628-636 ◽  
Author(s):  
Francis Sullivan

Let X be a real Banach space. According to von Neumann's famous geometrical characterization X is a Hilbert space if and only if for all x, y ∈ XThus Hilbert space is distinguished among all real Banach spaces by a certain uniform behavior of the set of all two dimensional subspaces. A related characterization of real Lp spaces can be given in terms of uniform behavior of all two dimensional subspaces and a Boolean algebra of norm-1 projections [16]. For an arbitrary space X, one way of measuring the “uniformity” of the set of two dimensional subspaces is in terms of the real valued modulus of rotundity, i.e. for The space is said to be uniformly rotund if for each 0 we have .


1973 ◽  
Vol 9 (2) ◽  
pp. 219-226 ◽  
Author(s):  
E.S. Noussair

Let H be a fixed Hilbert space and B(H, H) be the Banach space of bounded linear operators from H to H with the uniform operator topology. Oscillation criteria are obtained for the operator differential equationwhere the coefficients A, C are linear operators from B(H, H) to B(H, H), for each t ≤ 0. A solution Y: R+ → B(H, H) is said to be oscillatory if there exists a sequence of points ti ∈ R+, so that ti → ∞ as i → ∞, and Y(ti) fails to have a bounded inverse. The main theorem states that a solution Y is oscillatory if an associated scalar differential equation is oscillatory.


1987 ◽  
Vol 29 (1) ◽  
pp. 99-104 ◽  
Author(s):  
Fuad Kittaneh

This paper is a continuation of [3] in which some inequalities for the Schatten p-norm were considered. The purpose of the present paper is to improve some inequalities in [3] as well as to give more inequalities in the same spirit.Let H be a separable, infinite dimensional complex Hilbert space, and let B(H) denote the algebra of all bounded linear operators acting on H. Let K(H) denote the closed two-sided ideal of compact operators on H. For any compact operator A, let |A| = (A*A)½ and s1(A), s2(A),… be the eigenvalues of |A| in decreasing order and repeated according to multiplicity. A compact operator A is said to be in the Schatten p-class Cp(1 ≤ p < ∞), if Σ s1(A)p < ∞. The Schatten p-norm of A is defined by ∥A∥p = (Σ si(A)p)1/p. This norm makes Cp into a Banach space. Hence C1 is the trace class and C2 is the Hilbert-Schmidt class. It is reasonable to let C∞ denote the ideal of compact operators K(H), and ∥.∥∞ stand for the usual operator norm.


2010 ◽  
Vol 10 (2) ◽  
pp. 325-348 ◽  
Author(s):  
Piotr Koszmider ◽  
Miguel Martín ◽  
Javier Merí

AbstractGiven a separable Banach space E, we construct an extremely non-complex Banach space (i.e. a space satisfying that ‖ Id + T2 ‖ = 1 + ‖ T2 ‖ for every bounded linear operator T on it) whose dual contains E* as an L-summand. We also study surjective isometries on extremely non-complex Banach spaces and construct an example of a real Banach space whose group of surjective isometries reduces to ±Id, but the group of surjective isometries of its dual contains the group of isometries of a separable infinite-dimensional Hilbert space as a subgroup.


1979 ◽  
Vol 2 (4) ◽  
pp. 669-676
Author(s):  
Mou-Hsiung Chang

In this paper we obtain an integral characterization of a two-sided upper function for Brownian motion in a real separable Banach space. This characterization generalizes that of Jain and Taylor [2] whereB=ℝn. The integral test obtained involves the index of a mean zero Gaussian measure on the Banach space, which is due to Kuelbs [3]. The special case that whenBis itself a real separable Hilbert space is also illustrated.


Sign in / Sign up

Export Citation Format

Share Document