scholarly journals A Feasible and Facile Method for the Anticounterfeiting of Down Fiber

2021 ◽  
Vol 2021 ◽  
pp. 1-9
Author(s):  
Qianpeng Jin ◽  
Simeng Gao ◽  
Yang Xu

In order to prevent counterfeiting of down fiber from consumers, rare earth fluorescent materials are developed in the field of material identification and anticounterfeiting. Herein, the development of verifiable down fiber based on infrared excitation-infrared emission was described. A novel method was approached to prepare security down fiber, which involved modification of down-conversion nanoparticles (DCNPs) by sulfonic groups and self-assembly onto down fiber through electrostatic force. DCNPs were successfully prepared from ytterbium-deposited NaYF4 nanoparticles using a complexation precipitation approach, in which the trivalent ytterbium ions served as the luminescent center. Sulfonic down-conversion nanoparticles (SO3-SiO2@DCNPs) were fabricated by the hydrolysis of 3-mercaptopropyl triethoxysilane (MPTES) and next oxidation to enhance the combination of the DCNPs with down fiber. The synthesis of DCNPs and SO3-SiO2@DCNPs and its pendant to down were confirmed by XRD, SEM, XPS, FT-IR, Zeta potential meter, and PL, which revealed the presence of DCNPs in the size average 86 nm. The obtained DCNPs and security down fiber were launching an invisible red-shifted emission of 930∼1080 nm (corresponding to the 2F5/2 ⟶ 2F7/2 transitions in Yb3+). After washing, the infrared emission of security down fiber was evaluated and proved to be effective with fine results, which showed its potential application in the field of security.

2018 ◽  
Vol 71 (3) ◽  
pp. 119
Author(s):  
Yanlian Niu ◽  
Sisheng Hu ◽  
Qian Zhou ◽  
Yang Liu ◽  
Yuhong Liu ◽  
...  

Self-assembly techniques have been demonstrated to be a useful approach to developing new functional nanomaterials. In this study, a novel method to fabricate a manganese phosphate self-assembly monolayer (SAM) on a hyperbranched polyester (HBPE-OH) nanoparticle surface is described. First, the second-generation aliphatic HBPE-OH was carboxy-terminated, phosphorylated, and then ionized with manganese by a three-step modification process. The final product of HBPE-AMPA-Mn2+ particles was obtained and characterised by FT-IR spectroscopy, 1H NMR spectroscopy, transmission electron microscopy (TEM), Zeta potential, and energy dispersive spectroscopy (EDS). Moreover, the HBPE-AMPA-Mn2+ particles were used to construct a novel biosensor for detection of superoxide anions (O2•−) released from HeLa cells. Results showed that the response currents of this biosensor were proportional to the O2•− concentration ranging from 0.79 to 16.6 μM, and provided an extremely low detection limit of 0.026 μM (S/N = 3). The results indicate that the particle-decorated electrode surface, which involved a hyperbranched structure and a surface self-assembly technology, proposed here will offer the ideal catalytic system for electrochemical enzymatic sensors.


2019 ◽  
Author(s):  
Liman Hou ◽  
Marta Dueñas-Diez ◽  
Rohit Srivastava ◽  
Juan Perez-Mercader

<p></p><p>Belousov-Zhabotinsky (B-Z) reaction driven polymerization-induced self-assembly (PISA), or B-Z PISA, is a novel method for the autonomous one-pot synthesis of polymer vesicles from a macroCTA (macro chain transfer agent) and monomer solution (“soup”) containing the above and the BZ reaction components. In it, the polymerization is driven (and controlled) by periodically generated radicals generated in the oscillations of the B-Z reaction. These are inhibitor/activator radicals for the polymerization. Until now B-Z PISA has only been carried out in batch reactors. In this manuscript we present the results of running the system using a continuously stirred tank reactor (CSTR) configuration which offers some interesting advantages.Indeed, by controlling the CSTR parameters we achieve reproducible and simultaneous control of the PISA process and of the properties of the oscillatory cargo encapsulated in the resulting vesicles. Furthermore, the use of flow chemistry enables a more precise morphology control and chemical cargo tuning. Finally, in the context of biomimetic applications a CSTR operation mimics more closely the open non-equilibrium conditions of living systems and their surrounding environments.</p><p></p>


2021 ◽  
Author(s):  
Xinxian Ma ◽  
Jinlong Yue ◽  
Bo Qiao ◽  
LIli Zhou ◽  
Yang Gao ◽  
...  

Supramolecular fluorescent materials have attracted considerable attention in recent years since they endow specific and unique properties to materials. Nevertheless, the utilization of photo-responsive characteristics to modulate their fluorescence emission...


2019 ◽  
Vol 15 (S356) ◽  
pp. 225-225
Author(s):  
Dalya Baron

AbstractIn this talk I will show that multi-wavelength observations can provide novel constraints on the properties of ionized gas outflows in AGN. I will present evidence that the infrared emission in active galaxies includes a contribution from dust which is mixed with the outflow and is heated by the AGN. We detect this infrared component in thousands of AGN for the first time, and use it to constrain the outflow location. By combining this with optical emission lines, we constrain the mass outflow rates and energetics in a sample of 234 type II AGN, the largest such sample to date. The key ingredient of our new outflow measurements is a novel method to estimate the electron density using the ionization parameter and location of the flow. The inferred electron densities, ∼104.5 cm−3, are two orders of magnitude larger than found in most other cases of ionized outflows. We argue that the discrepancy is due to the fact that the commonly-used [SII]-based method underestimates the true density by a large factor. As a result, the inferred mass outflow rates and kinetic coupling efficiencies are 1–2 orders of magnitude lower than previous estimates, and 3–4 orders of magnitude lower than the typical requirement in hydrodynamic cosmological simulations. These results have significant implications for the relative importance of ionized outflows feedback in this population.


2013 ◽  
Vol 705 ◽  
pp. 115-119
Author(s):  
Bao Yong Tian ◽  
Er Jun Tang ◽  
Miao Yuan ◽  
Rui Xia Hao ◽  
Cun Man Li ◽  
...  

The well-defined block copolymer PMMA-b-PS was prepared by two-step ATRP in emulsion system. GPC results indicate that Mn increased linearly with conversion and polydispersity remained relatively narrow. It presents the characteristics of living polymerization in emulsion system. FT-IR demonstrated that block copolymer PMMA-b-PS could be successfully synthesized by ATRP with macroinitiator PMMA-Cl in emulsion system. The morphological characteristic of the self-assembly depends on the block copolymer concentration and transforms between spheres and rodlike micelles. The property indicates a perfect potential application in drug delivery materials.


2010 ◽  
Vol 148-149 ◽  
pp. 924-928
Author(s):  
Xue Min Yan ◽  
Yuan Zhu Mi

Two kinds of mesoporous HPW/SiO2 composites, which have been synthesized respectively by the amino-functionalized (AF) method and evaporation-induced self-assembly (EISA) method, have been used as catalysts in the oxidative desulfurization process of dibenzothiophene(DBT). The catalytic performance results show that the catalyst synthesized by EISA method holds higher catalytic activity than that synthesized by the AF method. The difference of catalytic activity can be attributed to the different synthesis mechanism of two kinds of composites. In the AF method, the bonding force between HPW and SiO2 is strong acid-base interaction, which damages the Keggin structure. Whereas in the EISA process, electrostatic force and hydrogen bonds between W=O groups and Si-OH groups are main bonding forces. The hydrogen bond holds the electron-withdrawing effect, which increases the activity of nonbonding W=O groups in HPW and then results in the enhancement of the catalytic activity.


1999 ◽  
Vol 32 (2) ◽  
pp. 289-304 ◽  
Author(s):  
M. J. Velasco ◽  
F. Rubio ◽  
J. Rubio ◽  
J. L. Oteo

1970 ◽  
Vol 46 (3) ◽  
pp. 375-378 ◽  
Author(s):  
MM Islam ◽  
SM Masum ◽  
MM Rahman ◽  
AA Shaikh

The present investigation described the effective preparation of glucosamine hydrochloride (GluHCl) from chitin which was extracted from indigenous shrimp shell. GluHCl has attracted much attention owing to its therapeutic activity in osteoarthritis and widely used dietary supplement. The key step involved was extraction of chitin from shrimp skeleton and then hydrolysis of chitin by concentrated hydrochloric acid. The reaction proceeds via break down of glycoside linkage. Structural analysis was carried out by melting point, TLC, FT-IR, elemental analysis and all the data were compared with that of standard GluHCl. The elemental (C, 32.75; H, 6.51; N, 6.20) analysis is good concord with the calculated value (C, 33.42; H, 6.54; N, 6.50). Absence of v max at 1726 cm-1 indicates that GluHCl is a deacetylated product of chitin. The yields of the product mainly depend on reaction conditions. Maximum yield (63.5%) was obtained when chitin was hydrolyzed with concentrated HCl for 1.30 h. Key words: Shrimp shell; Chitin, Acid hydrolysis; Glucosamine hydrochloride Osteoarthritis. DOI: http://dx.doi.org/10.3329/bjsir.v46i3.9046 BJSIR 2011; 46(3): 375-378


Sign in / Sign up

Export Citation Format

Share Document