scholarly journals Vehicle Ride Comfort Analysis Based on Vehicle-Bridge Coupled Vibration

2021 ◽  
Vol 2021 ◽  
pp. 1-14
Author(s):  
Yichang Zhang ◽  
Wusheng Li ◽  
Zhe Ji ◽  
Guichun Wang

The study in this paper aims to evaluate the effects of vehicle-bridge coupled vibration on the vehicle ride comfort. The mechanical model of both vehicle and bridge subsystems and the vibration differential equations are established, respectively, based on the principle of dynamic balance and finite element method. The APDL command stream for iterative calculation is compiled on the ANSYS platform. The method to evaluate the vehicle ride comfort is established according to the criteria in ISO2631-1-1997. The vehicle dynamic responses and ride comfort are analyzed considering different pavement levels while multiple vehicles pass through the cable-stayed bridge. The analysis results indicate that the dynamic responses of vehicles decrease with the improvement of pavement roughness, resulting in the vehicle ride comfort to be better; the dynamic responses of vehicles increase with the increment of vehicle speed or the decrement of vehicle gravity, resulting in the vehicle ride comfort to be worse. The present research results can provide an insight into the rational design of bridge structure so as to reduce the vehicle-bridge coupling vibration responses and improve the ride quality of drivers and passengers.

Mathematics ◽  
2021 ◽  
Vol 9 (12) ◽  
pp. 1345
Author(s):  
Xiaopeng Li ◽  
Fanjie Li ◽  
Dongyang Shang

The “inerter-spring-damper” (ISD) suspension system is a suspension system composed of an inerter, spring, and damper. To study the ride comfort and stability of the vehicle by using the ISD suspension system, a vehicle model with ISD suspension is established in this paper. The vehicle model including vertical, pitch, roll, and yaw motion of the vehicle body. Based on the vehicle model, the differential equation of motion with ISD suspension is obtained. The dynamic responses of the ISD suspension system are investigated by using different road excitations. At the same time, the influence of coupled excitation and single excitation on the vibration reduction performance of the ISD suspension system is studied. Then, the dynamic responses of ISD suspension and passive suspension are compared, and the improvement of comprehensive vibration reduction performance of ISD suspension system is quantitatively analyzed. The numerical results illustrate the ISD suspension has the optimal vehicle speed under different road excitations, and the comprehensive vibration reduction performance of the ISD suspension is the best when driving at the optimal vehicle speed. Under different types of road excitation, ISD suspension shows excellent comprehensive vibration reduction performance. ISD suspension is more suitable for vibration reduction of complex roads than that of a single road.


Author(s):  
Lei Zuo ◽  
Pei-Sheng Zhang

This paper presents a comprehensive assessment of the power that is available for harvesting in the vehicle suspension system and the tradeoff among energy harvesting, ride comfort, and road handing with analysis, simulations and experiments. The excitation from road irregularity is modeled as a stationary random process with road roughness suggested in the ISO standard. The concept of system H2 norm is used to obtain mean value of power generation and the root mean square values of vehicle body acceleration (ride quality) and dynamic tire-ground contact force (road handling). For a quarter car model, analytical solution of the mean power is obtained. The influence of road roughness, vehicle speed, suspension stiffness, shock absorber damping, tire stiffness, wheel and chasses masses to the vehicle performances and harvestable power are studied. Experiments are carried out to verify the theoretical analysis. The results suggest that road roughness, tire stiffness, and vehicle driving speed have great influence to the harvesting power potential, where the suspension stiffness, absorber damping, vehicle masses are insensitive. At 60mph on good and average roads 100–400 watts average power is available in the suspensions of a middle-size vehicle.


Author(s):  
Fenghua Huang ◽  
Bin Cheng ◽  
Nianguan Teng

This paper established a numerical model to investigate the dynamic behavior of LMS (low-medium-speed) maglev vehicle-guideway bridge coupling system. In this model, the vehicle was simulated as a 3D (3-dimensional) multi-rigid body with 45 DOFs (degree of freedoms), and the guideway bridge was built through finite element method. Two-dimensional magnet-guideway relationship was introduced, and the control strategies of active suspension control based on PID controller and passive guidance control were employed to reflect the vehicle-guideway interaction. A solution program was then developed to solve the vehicle-guideway interaction problem. Through case study, the vibration responses achieved from 3D interaction model were compared to those from corresponding 2D (2-dimensional) model. Besides, the effects of pier and guideway irregularity on dynamic responses of vehicle-guideway bridge coupling system were investigated, and the frequency responses of vehicle and guideway were also analyzed. The result shows that ignoring the pier modeling or guideway irregularity would significantly undervalue the vibration responses of maglev vehicle-guideway bridge interaction system. The frequency responses indicate that the vibrations of vehicle-guideway bridge system are significantly related to the geometric dimensions of maglev vehicle, especially the distance between two magnet units. Finally, parametric study was carried out to determine the effects of key parameters (i.e., vehicle speed and natural frequency of guideway) on guideway responses.


Author(s):  
Shiang-Lung Koo ◽  
Han-Shue Tan ◽  
Fanping Bu ◽  
Masayoshi Tomizuka

Ride comfort at low vehicle speed is often overlooked but is very important to vehicle control applications (e.g. the latest stop-and-go function in Adaptive Cruise Control). Most control strategies that address passenger comfort simply utilize the bounds of jerk and acceleration of the vehicles. In general, they have several major limitations when applied to low-speed applications: (I) frequency-domain comfort requirements are not integrated and (II) the vehicle models are simplified too far to capture the tire and suspension dynamics that may impact comfort significantly at low speeds. This paper develops a control scheme for ride quality under stop-and-go situations. The scheme is based on optimal control and it ensures smooth acceleration during vehicle maneuvers. A two-degree-of-freedom control strategy is used to approximate the optimal control law. Experimental results demonstrate the effectiveness of this control scheme.


2020 ◽  
Vol 2020 ◽  
pp. 1-12
Author(s):  
Qingfei Gao ◽  
Biao Wu ◽  
Renzhi Wang ◽  
Jiaqiang Zhang ◽  
Binqiang Guo ◽  
...  

To study the damage of bridge pile foundations caused by scouring, two damage mechanisms of scouring are proposed in this paper. Considering the vehicle-bridge coupled vibration in terms of two aspects of the scouring depth and erosion depth, the vertical and transversal dynamic characteristics and dynamic responses of the bridge are studied under different cases for the most sensitive vehicle speed. The dynamic characteristics include the 1st and 2nd vibration modes of the vertical and transversal directions of the bridge. The dynamic responses include the vertical and transversal dynamic load allowances and acceleration of the bridge. The souring depth is more sensitive than the erosion depth, and the 2nd vertical mode is most substantially influenced by scouring and erosion. Because of the small value of the natural frequency of the vertical vibration modes, the transversal vibration modes may be more convenient to obtain. The study of the dynamic responses shows that the scouring depth can be represented by the dynamic load allowance in the middle of the span’s section and the erosion depth can be characterized by the dynamic load allowance at the quarter location of the span’s section.


2017 ◽  
Vol 2017 ◽  
pp. 1-23 ◽  
Author(s):  
Dong-Ju Min ◽  
Soon-Duck Kwon ◽  
Jong-Won Kwark ◽  
Moon-Young Kim

The purpose of this paper is to present a framework to analyze the interaction between an actively controlled magnetic levitation vehicle and a guideway structure under gusty wind. The equation of motion is presented for a 30-dof maglev vehicle model consisting of one cabin and four bogies. In addition, a lateral electromagnetic suspension (EMS) system is introduced to improve the running safety and ride quality of the maglev vehicle subjected to turbulent crosswind. By using the developed simulation tools, the effects of various parameters on the dynamic response of the vehicle and guideway are investigated in the case of the UTM maglev vehicle running on a simply supported guideway and cable-stayed guideway. The simulation results show that the independent lateral EMS and associated control scheme are definitely helpful in improving the running safety and ride quality of the vehicle under gusty wind. In the case of the cable-stayed guideway, at low wind speed, vehicle speed is the dominant factor influencing the dynamic responses of the maglev vehicle and the guideway, but at wind speed over 10 m/s, wind becomes the dominant factor. For the ride quality of the maglev vehicle, wind is also the most influential factor.


2016 ◽  
Vol 2016 ◽  
pp. 1-12
Author(s):  
Xinwen Yang ◽  
Xiaoshan Liu ◽  
Shunhua Zhou ◽  
Xiaoyun Ma ◽  
Jiangang Shen ◽  
...  

In order to reduce the ground-borne vibration caused by wheel/rail interaction in the ballastless track of high speed railways, viscoelastic asphalt concrete materials are filled between the track and the subgrade to attenuate wheel/rail force. A high speed train-track-subgrade vertical coupled dynamic model is developed in the frequency domain. In this model, coupling effects between the vehicle and the track and between the track and the subgrade are considered. The full vehicle is represented by some rigid body models of one body, two bogies, and four wheelsets connected to each other with springs and dampers. The track and subgrade system is considered as a multilayer beam model in which layers are connected to each other with springs and damping elements. The vertical receptance of the rail is discussed and the receptance contribution of the wheel/rail interaction is investigated. Combined with the pseudoexcitation method, a solution of the random dynamic response is presented. The random vibration responses and transfer characteristics of the ballastless track and subgrade system are obtained under track random irregularity when a high speed vehicle runs through. The influences of asphalt concrete layer’s stiffness and vehicle speed on track and subgrade coupling vibration are analyzed.


Energies ◽  
2021 ◽  
Vol 14 (3) ◽  
pp. 671
Author(s):  
Jialing Yao ◽  
Meng Wang ◽  
Zhihong Li ◽  
Yunyi Jia

To improve the handling stability of automobiles and reduce the odds of rollover, active or semi-active suspension systems are usually used to control the roll of a vehicle. However, these kinds of control systems often take a zero-roll-angle as the control target and have a limited effect on improving the performance of the vehicle when turning. Tilt control, which actively controls the vehicle to tilt inward during a curve, greatly benefits the comprehensive performance of a vehicle when it is cornering. After analyzing the advantages and disadvantages of the tilt control strategies for narrow commuter vehicles by combining the structure and dynamic characteristics of automobiles, a direct tilt control (DTC) strategy was determined to be more suitable for automobiles. A model predictive controller for the DTC strategy was designed based on an active suspension. This allowed the reverse tilt to cause the moment generated by gravity to offset that generated by the centrifugal force, thereby significantly improving the handling stability, ride comfort, vehicle speed, and rollover prevention. The model predictive controller simultaneously tracked the desired tilt angle and yaw rate, achieving path tracking while improving the anti-rollover capability of the vehicle. Simulations of step-steering input and double-lane change maneuvers were performed. The results showed that, compared with traditional zero-roll-angle control, the proposed tilt control greatly reduced the occupant’s perceived lateral acceleration and the lateral load transfer ratio when the vehicle turned and exhibited a good path-tracking performance.


2020 ◽  
Vol 11 (1) ◽  
pp. 102-111
Author(s):  
Em Poh Ping ◽  
J. Hossen ◽  
Wong Eng Kiong

AbstractLane departure collisions have contributed to the traffic accidents that cause millions of injuries and tens of thousands of casualties per year worldwide. Due to vision-based lane departure warning limitation from environmental conditions that affecting system performance, a model-based vehicle dynamics framework is proposed for estimating the lane departure event by using vehicle dynamics responses. The model-based vehicle dynamics framework mainly consists of a mathematical representation of 9-degree of freedom system, which permitted to pitch, roll, and yaw as well as to move in lateral and longitudinal directions with each tire allowed to rotate on its axle axis. The proposed model-based vehicle dynamics framework is created with a ride model, Calspan tire model, handling model, slip angle, and longitudinal slip subsystems. The vehicle speed and steering wheel angle datasets are used as the input in vehicle dynamics simulation for predicting lane departure event. Among the simulated vehicle dynamic responses, the yaw acceleration response is observed to provide earlier insight in predicting the future lane departure event compared to other vehicle dynamics responses. The proposed model-based vehicle dynamics framework had shown the effectiveness in estimating lane departure using steering wheel angle and vehicle speed inputs.


Author(s):  
Mojtaba Azizi ◽  
Majid Shahravi ◽  
Jabbar-Ali Zakeri

Nowadays, with various advancements in the railway industry and increasing speed of trains, the design of railway tracks and vehicles has become vitally important. One of the frequent problems of ballasted tracks is the existence of unsupported sleepers. This phenomenon occurs due to the lack of ballast underneath the sleepers. Here, a model is presented, in which a flexible track model in a multibody dynamics program is developed, in order to study the dynamic behavior of a vehicle. By utilizing the model, it is feasible to simulate unsupported sleepers on the flexible track including rail, sleeper, and ballast components. In order to verify the results of numerical model, a field test is performed. Findings indicate that, in the case of a single unsupported sleeper through the track, the ride comfort index increased by 100% after increasing the train speed from 30 to 110 km/h. Moreover, when it is needed to have ride comfort index improvement over the uncomfortable level, the vehicle speed should be less than 70 km/h and 50 km/h for tracks with one unsupported sleeper and two unsupported sleepers, respectively.


Sign in / Sign up

Export Citation Format

Share Document