scholarly journals Multimodal Emotion Recognition Model Based on a Deep Neural Network with Multiobjective Optimization

2021 ◽  
Vol 2021 ◽  
pp. 1-10
Author(s):  
Mingyong Li ◽  
Xue Qiu ◽  
Shuang Peng ◽  
Lirong Tang ◽  
Qiqi Li ◽  
...  

With the rapid development of deep learning and wireless communication technology, emotion recognition has received more and more attention from researchers. Computers can only be truly intelligent when they have human emotions, and emotion recognition is its primary consideration. This paper proposes a multimodal emotion recognition model based on a multiobjective optimization algorithm. The model combines voice information and facial information and can optimize the accuracy and uniformity of recognition at the same time. The speech modal is based on an improved deep convolutional neural network (DCNN); the video image modal is based on an improved deep separation convolution network (DSCNN). After single mode recognition, a multiobjective optimization algorithm is used to fuse the two modalities at the decision level. The experimental results show that the proposed model has a large improvement in each evaluation index, and the accuracy of emotion recognition is 2.88% higher than that of the ISMS_ALA model. The results show that the multiobjective optimization algorithm can effectively improve the performance of the multimodal emotion recognition model.

2021 ◽  
Vol 2021 ◽  
pp. 1-13
Author(s):  
Jinlei Zhang ◽  
Xue Qiu ◽  
Xiang Li ◽  
Zhijie Huang ◽  
Mingqiu Wu ◽  
...  

Emotion recognition is a research hotspot in the field of artificial intelligence. If the human-computer interaction system can sense human emotion and express emotion, it will make the interaction between the robot and human more natural. In this paper, a multimodal emotion recognition model based on many-objective optimization algorithm is proposed for the first time. The model integrates voice information and facial information and can simultaneously optimize the accuracy and uniformity of recognition. This paper compares the emotion recognition algorithm based on many-objective algorithm optimization with the single-modal emotion recognition model proposed in this paper and the ISMS_ALA model proposed by recent related research. The experimental results show that compared with the single-mode emotion recognition, the proposed model has a great improvement in each evaluation index. At the same time, the accuracy of emotion recognition is 2.88% higher than that of the ISMS_ALA model. The experimental results show that the many-objective optimization algorithm can effectively improve the performance of the multimodal emotion recognition model.


2021 ◽  
Author(s):  
Jian Zhao ◽  
ZhiWei Zhang ◽  
Jinping Qiu ◽  
Lijuan Shi ◽  
Zhejun KUANG ◽  
...  

Abstract With the rapid development of deep learning in recent years, automatic electroencephalography (EEG) emotion recognition has been widely concerned. At present, most deep learning methods do not normalize EEG data properly and do not fully extract the features of time and frequency domain, which will affect the accuracy of EEG emotion recognition. To solve these problems, we propose GTScepeion, a deep learning EEG emotion recognition model. In pre-processing, the EEG time slicing data including channels were pre-processed. In our model, global convolution kernels are used to extract overall semantic features, followed by three kinds of temporal convolution kernels representing different emotional periods, followed by two kinds of spatial convolution kernels highlighting brain hemispheric differences to extract spatial features, and finally emotions are dichotomy classified by the full connected layer. The experiments is based on the DEAP dataset, and our model can effectively normalize the data and fully extract features. For Arousal, ours is 8.76% higher than the current optimal emotion recognition model based on Inception. For Valence, the best accuracy of our model reaches 91.51%.


2021 ◽  
Author(s):  
Naveen Kumari ◽  
Rekha Bhatia

Abstract Facial emotion recognition extracts the human emotions from the images and videos. As such, it requires an algorithm to understand and model the relationships between faces and facial expressions, and to recognize human emotions. Recently, deep learning models are extensively utilized enhance the facial emotion recognition rate. However, the deep learning models suffer from the overfitting issue. Moreover, deep learning models perform poorly for images which have poor visibility and noise. Therefore, in this paper, a novel deep learning based facial emotion recognition tool is proposed. Initially, a joint trilateral filter is applied to the obtained dataset to remove the noise. Thereafter, contrast-limited adaptive histogram equalization (CLAHE) is applied to the filtered images to improve the visibility of images. Finally, a deep convolutional neural network is trained. Nadam optimizer is also utilized to optimize the cost function of deep convolutional neural networks. Experiments are achieved by using the benchmark dataset and competitive human emotion recognition models. Comparative analysis demonstrates that the proposed facial emotion recognition model performs considerably better compared to the competitive models.


2018 ◽  
Vol 30 (4) ◽  
pp. 407-417
Author(s):  
Yifan Sun ◽  
Jinglei Zhang ◽  
Xiaoyuan Wang ◽  
Zhangu Wang ◽  
Jie Yu

Drinking-driving behaviors are important causes of road traffic injuries, which are serious threats to the lives and property of traffic participants. Therefore, reducing the occurrences of drinking-driving behaviors has become an important problem of traffic safety research. Forty-eight male drivers and six female drivers who could drink moderate alcohol were chosen as participants. The drivers’ physiological data, operation behavior data, car running data, and driving environment data were collected by designing various virtual traffic scenes and organizing drivers to conduct driving simulation experiments. The original variables were analyzed by the Principal Component Analysis (PCA), and seven principal components were extracted as the input vector of the Radial Basis Function (RBF) neural network. The principal component data was used to train and verify the RBF neural network. The Levenberg-Marquardt (LM) algorithm was chosen to train the parameters of the neural network and build a drinking-driving recognition model based on PCA and RBF  neural network to realize an accurate recognition of drinking-driving behaviors. The test results showed that the drinking-driving recognition model based on PCA and RBF neural network could identify drinking drivers accurately during driving process with a recognition accuracy of 92.01%, and the operation efficiency of the model was high. The research can provide useful reference for prevention and treatment of drinking and  driving and traffic safety maintenance.


2020 ◽  
Vol 2020 ◽  
pp. 1-16
Author(s):  
Ding Han ◽  
Jianrong Zheng

Most of the multiobjective optimization problems in engineering involve the evaluation of expensive objectives and constraint functions, for which an approximate model-based multiobjective optimization algorithm is usually employed, but requires a large amount of function evaluation. Aiming at effectively reducing the computation cost, a novel infilling point criterion EIR2 is proposed, whose basic idea is mapping a point in objective space into a set in expectation improvement space and utilizing the R2 indicator of the set to quantify the fitness of the point being selected as an infilling point. This criterion has an analytic form regardless of the number of objectives and demands lower calculation resources. Combining the Kriging model, optimal Latin hypercube sampling, and particle swarm optimization, an algorithm, EIR2-MOEA, is developed for solving expensive multiobjective optimization problems and applied to three sets of standard test functions of varying difficulty and comparing with two other competitive infill point criteria. Results show that EIR2 has higher resource utilization efficiency, and the resulting nondominated solution set possesses good convergence and diversity. By coupling with the average probability of feasibility, the EIR2 criterion is capable of dealing with expensive constrained multiobjective optimization problems and its efficiency is successfully validated in the optimal design of energy storage flywheel.


Sign in / Sign up

Export Citation Format

Share Document