scholarly journals COVID-19 Pandemic Forecasting Using CNN-LSTM: A Hybrid Approach

2021 ◽  
Vol 2021 ◽  
pp. 1-23
Author(s):  
Zuhaira M. Zain ◽  
Nazik M. Alturki

COVID-19 has sparked a worldwide pandemic, with the number of infected cases and deaths rising on a regular basis. Along with recent advances in soft computing technology, researchers are now actively developing and enhancing different mathematical and machine-learning algorithms to forecast the future trend of this pandemic. Thus, if we can accurately forecast the trend of cases globally, the spread of the pandemic can be controlled. In this study, a hybrid CNN-LSTM model was developed on a time-series dataset to forecast the number of confirmed cases of COVID-19. The proposed model was evaluated and compared with 17 baseline models on test and forecast data. The primary finding of this research is that the proposed CNN-LSTM model outperformed them all, with the lowest average MAPE, RMSE, and RRMSE values on both test and forecast data. Conclusively, our experimental results show that, while standalone CNN and LSTM models provide acceptable and efficient forecasting performance for the confirmed COVID-19 cases time series, combining both models in the proposed CNN-LSTM encoder-decoder structure provides a significant boost in forecasting performance. Furthermore, we demonstrated that the suggested model produced satisfactory predicting results even with a small amount of data.

Symmetry ◽  
2020 ◽  
Vol 12 (6) ◽  
pp. 954
Author(s):  
Aiwu Zhao ◽  
Junhong Gao ◽  
Hongjun Guan

The fluctuation of the stock market has a symmetrical characteristic. To improve the performance of self-forecasting, it is crucial to summarize and accurately express internal fluctuation rules from the historical time series dataset. However, due to the influence of external interference factors, these internal rules are difficult to express by traditional mathematical models. In this paper, a novel forecasting model is proposed based on probabilistic linguistic logical relationships generated from historical time series dataset. The proposed model introduces linguistic variables with positive and negative symmetrical judgements to represent the direction of stock market fluctuation. Meanwhile, daily fluctuation trends of a stock market are represented by a probabilistic linguistic term set, which consist of daily status and its recent historical statuses. First, historical time series of a stock market is transformed into a fluctuation time series (FTS) by the first-order difference transformation. Then, a fuzzy linguistic variable is employed to represent each value in the fluctuation time series, according to predefined intervals. Next, left hand sides of fuzzy logical relationships between currents and their corresponding histories can be expressed by probabilistic linguistic term sets and similar ones can be grouped to generate probabilistic linguistic logical relationships. Lastly, based on the probabilistic linguistic term set expression of the current status and the corresponding historical statuses, distance measurement is employed to find the most proper probabilistic linguistic logical relationship for future forecasting. For the convenience of comparing the prediction performance of the model from the perspective of accuracy, this paper takes the closing price dataset of Taiwan Stock Exchange Capitalization Weighted Stock Index (TAIEX) as an example. Compared with the prediction results of previous studies, the proposed model has the advantages of stable prediction performance, simple model design, and an easy to understand platform. In order to test the performance of the model for other datasets, we use the prediction of the Shanghai Stock Exchange Composite Index (SHSECI) to prove its universality.


2021 ◽  
Vol 13 (19) ◽  
pp. 10963
Author(s):  
Simona-Vasilica Oprea ◽  
Adela Bâra ◽  
Florina Camelia Puican ◽  
Ioan Cosmin Radu

When analyzing smart metering data, both reading errors and frauds can be identified. The purpose of this analysis is to alert the utility companies to suspicious consumption behavior that could be further investigated with on-site inspections or other methods. The use of Machine Learning (ML) algorithms to analyze consumption readings can lead to the identification of malfunctions, cyberattacks interrupting measurements, or physical tampering with smart meters. Fraud detection is one of the classical anomaly detection examples, as it is not easy to label consumption or transactional data. Furthermore, frauds differ in nature, and learning is not always possible. In this paper, we analyze large datasets of readings provided by smart meters installed in a trial study in Ireland by applying a hybrid approach. More precisely, we propose an unsupervised ML technique to detect anomalous values in the time series, establish a threshold for the percentage of anomalous readings from the total readings, and then label that time series as suspicious or not. Initially, we propose two types of algorithms for anomaly detection for unlabeled data: Spectral Residual-Convolutional Neural Network (SR-CNN) and an anomaly trained model based on martingales for determining variations in time-series data streams. Then, the Two-Class Boosted Decision Tree and Fisher Linear Discriminant analysis are applied on the previously processed dataset. By training the model, we obtain the required capabilities of detecting suspicious consumers proved by an accuracy of 90%, precision score of 0.875, and F1 score of 0.894.


2021 ◽  
Vol 5 (4) ◽  
pp. 175
Author(s):  
Ahmed I. Shahin ◽  
Sultan Almotairi

The COVID-19 pandemic has widely spread with an increasing infection rate through more than 200 countries. The governments of the world need to record the confirmed infectious, recovered, and death cases for the present state and predict the cases. In favor of future case prediction, governments can impose opening and closing procedures to save human lives by slowing down the pandemic progression spread. There are several forecasting models for pandemic time series based on statistical processing and machine learning algorithms. Deep learning has been proven as an excellent tool for time series forecasting problems. This paper proposes a deep learning time-series prediction model to forecast the confirmed, recovered, and death cases. Our proposed network is based on an encoding–decoding deep learning network. Moreover, we optimize the selection of our proposed network hyper-parameters. Our proposed forecasting model was applied in Saudi Arabia. Then, we applied the proposed model to other countries. Our study covers two categories of countries that have witnessed different spread waves this year. During our experiments, we compared our proposed model and the other time-series forecasting models, which totaled fifteen prediction models: three statistical models, three deep learning models, seven machine learning models, and one prophet model. Our proposed forecasting model accuracy was assessed using several statistical evaluation criteria. It achieved the lowest error values and achieved the highest R-squared value of 0.99. Our proposed model may help policymakers to improve the pandemic spread control, and our method can be generalized for other time series forecasting tasks.


2014 ◽  
Vol 52 (7) ◽  
pp. 1255-1262 ◽  
Author(s):  
Kun-Huang Huarng

Purpose – The purpose of this paper is to propose an occurrence-based model to improve the forecasting of regime switches so as to assist decision making. Design/methodology/approach – This paper proposes a novel model where occurrences of relationships are taken into account when forecasting. Taiwan Stock Exchange Capitalization Weighted Stock Index is taken as the forecasting target. Findings – Due to the consideration of occurrences of relationships in forecasting, the out of sample forecasting is improved. Practical implications – The proposed model can be applied to forecast other time series for regime switches. In addition, it can be integrated with other time series models to improve forecasting performance. Originality/value – The empirical results show that the proposed model can improve the forecasting performance.


2020 ◽  
Vol 23 (4) ◽  
pp. 274-284 ◽  
Author(s):  
Jingang Che ◽  
Lei Chen ◽  
Zi-Han Guo ◽  
Shuaiqun Wang ◽  
Aorigele

Background: Identification of drug-target interaction is essential in drug discovery. It is beneficial to predict unexpected therapeutic or adverse side effects of drugs. To date, several computational methods have been proposed to predict drug-target interactions because they are prompt and low-cost compared with traditional wet experiments. Methods: In this study, we investigated this problem in a different way. According to KEGG, drugs were classified into several groups based on their target proteins. A multi-label classification model was presented to assign drugs into correct target groups. To make full use of the known drug properties, five networks were constructed, each of which represented drug associations in one property. A powerful network embedding method, Mashup, was adopted to extract drug features from above-mentioned networks, based on which several machine learning algorithms, including RAndom k-labELsets (RAKEL) algorithm, Label Powerset (LP) algorithm and Support Vector Machine (SVM), were used to build the classification model. Results and Conclusion: Tenfold cross-validation yielded the accuracy of 0.839, exact match of 0.816 and hamming loss of 0.037, indicating good performance of the model. The contribution of each network was also analyzed. Furthermore, the network model with multiple networks was found to be superior to the one with a single network and classic model, indicating the superiority of the proposed model.


Entropy ◽  
2019 ◽  
Vol 21 (5) ◽  
pp. 455 ◽  
Author(s):  
Hongjun Guan ◽  
Zongli Dai ◽  
Shuang Guan ◽  
Aiwu Zhao

In time series forecasting, information presentation directly affects prediction efficiency. Most existing time series forecasting models follow logical rules according to the relationships between neighboring states, without considering the inconsistency of fluctuations for a related period. In this paper, we propose a new perspective to study the problem of prediction, in which inconsistency is quantified and regarded as a key characteristic of prediction rules. First, a time series is converted to a fluctuation time series by comparing each of the current data with corresponding previous data. Then, the upward trend of each of fluctuation data is mapped to the truth-membership of a neutrosophic set, while a falsity-membership is used for the downward trend. Information entropy of high-order fluctuation time series is introduced to describe the inconsistency of historical fluctuations and is mapped to the indeterminacy-membership of the neutrosophic set. Finally, an existing similarity measurement method for the neutrosophic set is introduced to find similar states during the forecasting stage. Then, a weighted arithmetic averaging (WAA) aggregation operator is introduced to obtain the forecasting result according to the corresponding similarity. Compared to existing forecasting models, the neutrosophic forecasting model based on information entropy (NFM-IE) can represent both fluctuation trend and fluctuation consistency information. In order to test its performance, we used the proposed model to forecast some realistic time series, such as the Taiwan Stock Exchange Capitalization Weighted Stock Index (TAIEX), the Shanghai Stock Exchange Composite Index (SHSECI), and the Hang Seng Index (HSI). The experimental results show that the proposed model can stably predict for different datasets. Simultaneously, comparing the prediction error to other approaches proves that the model has outstanding prediction accuracy and universality.


Sensors ◽  
2021 ◽  
Vol 21 (14) ◽  
pp. 4846
Author(s):  
Dušan Marković ◽  
Dejan Vujičić ◽  
Snežana Tanasković ◽  
Borislav Đorđević ◽  
Siniša Ranđić ◽  
...  

The appearance of pest insects can lead to a loss in yield if farmers do not respond in a timely manner to suppress their spread. Occurrences and numbers of insects can be monitored through insect traps, which include their permanent touring and checking of their condition. Another more efficient way is to set up sensor devices with a camera at the traps that will photograph the traps and forward the images to the Internet, where the pest insect’s appearance will be predicted by image analysis. Weather conditions, temperature and relative humidity are the parameters that affect the appearance of some pests, such as Helicoverpa armigera. This paper presents a model of machine learning that can predict the appearance of insects during a season on a daily basis, taking into account the air temperature and relative humidity. Several machine learning algorithms for classification were applied and their accuracy for the prediction of insect occurrence was presented (up to 76.5%). Since the data used for testing were given in chronological order according to the days when the measurement was performed, the existing model was expanded to take into account the periods of three and five days. The extended method showed better accuracy of prediction and a lower percentage of false detections. In the case of a period of five days, the accuracy of the affected detections was 86.3%, while the percentage of false detections was 11%. The proposed model of machine learning can help farmers to detect the occurrence of pests and save the time and resources needed to check the fields.


Entropy ◽  
2021 ◽  
Vol 23 (6) ◽  
pp. 731
Author(s):  
Mengxia Liang ◽  
Xiaolong Wang ◽  
Shaocong Wu

Finding the correlation between stocks is an effective method for screening and adjusting investment portfolios for investors. One single temporal feature or static nontemporal features are generally used in most studies to measure the similarity between stocks. However, these features are not sufficient to explore phenomena such as price fluctuations similar in shape but unequal in length which may be caused by multiple temporal features. To research stock price volatilities entirely, mining the correlation between stocks should be considered from the point view of multiple features described as time series, including closing price, etc. In this paper, a time-sensitive composite similarity model designed for multivariate time-series correlation analysis based on dynamic time warping is proposed. First, a stock is chosen as the benchmark, and the multivariate time series are segmented by the peaks and troughs time-series segmentation (PTS) algorithm. Second, similar stocks are screened out by similarity. Finally, the rate of rising or falling together between stock pairs is used to verify the proposed model’s effectiveness. Compared with other models, the composite similarity model brings in multiple temporal features and is generalizable for numerical multivariate time series in different fields. The results show that the proposed model is very promising.


Sign in / Sign up

Export Citation Format

Share Document