scholarly journals Biharmonic maps on V-manifolds

2001 ◽  
Vol 27 (8) ◽  
pp. 477-484 ◽  
Author(s):  
Yuan-Jen Chiang ◽  
Hongan Sun

We generalize biharmonic maps between Riemannian manifolds into the case of the domain being V-manifolds. We obtain the first and second variations of biharmonic maps on V-manifolds. Since a biharmonic map from a compact V-manifold into a Riemannian manifold of nonpositive curvature is harmonic, we construct a biharmonic non-harmonic map into a sphere. We also show that under certain condition the biharmonic property offimplies the harmonic property off. We finally discuss the composition of biharmonic maps on V-manifolds.

2008 ◽  
Vol 19 (08) ◽  
pp. 981-996 ◽  
Author(s):  
YUAN-JEN CHIANG ◽  
ROBERT A. WOLAK

We generalize the notions of transversally harmonic maps between foliated Riemannian manifolds into transversally biharmonic maps. We show that a transversally biharmonic map into a foliated manifold of non-positive transverse curvature is transversally harmonic. Then we construct examples of transversally biharmonic non-harmonic maps into foliated manifolds of positive transverse curvature. We also prove that if f is a stable transversally biharmonic map into a foliated manifold of positive constant transverse sectional curvature and f satisfies the transverse conservation law, then f is a transversally harmonic map.


2019 ◽  
Vol 17 (1) ◽  
pp. 1249-1259
Author(s):  
Rong Mi

Abstract Let ψ:(M, g) → (N, h) be a map between Riemannian manifolds (M, g) and (N, h). We introduce the notion of the F-bienergy functional $$\begin{array}{} \displaystyle E_{F,2}(\psi)=\int\limits_{M}F\left(\frac{|\tau(\psi)|^{2}}{2}\right)\text{d}V_{g}, \end{array}$$ where F : [0, ∞) → [0, ∞) be C3 function such that F′ > 0 on (0, ∞), τ(ψ) is the tension field of ψ. Critical points of τF,2 are called F-biharmonic maps. In this paper, we prove a nonexistence result for F-biharmonic maps from a complete non-compact Riemannian manifold of dimension m = dimM ≥ 3 with infinite volume that admit an Euclidean type Sobolev inequality into general Riemannian manifold whose sectional curvature is bounded from above. Under these geometric assumptions we show that if the Lp-norm (p > 1) of the tension field is bounded and the m-energy of the maps is sufficiently small, then every F-biharmonic map must be harmonic. We also get a Liouville-type result under proper integral conditions which generalize the result of [Branding V., Luo Y., A nonexistence theorem for proper biharmonic maps into general Riemannian manifolds, 2018, arXiv: 1806.11441v2].


2008 ◽  
Vol 51 (3) ◽  
pp. 448-459 ◽  
Author(s):  
Toru Sasahara

AbstractBiharmonic maps are defined as critical points of the bienergy. Every harmonic map is a stable biharmonic map. In this article, the stability of nonharmonic biharmonic Legendrian submanifolds in Sasakian space forms is discussed.


Author(s):  
Qun Chen

AbstractLet M, N be Riemannian manifolds, f: M → N a harmonic map with potential H, namely, a smooth critical point of the functional EH(f) = ∫M[e(f)−H(f)], where e(f) is the energy density of f. Some results concerning the stability of these maps between spheres and any Riemannian manifold are given. For a general class of M, this paper also gives a result on the constant boundary-value problem which generalizes the result of Karcher-Wood even in the case of the usual harmonic maps. It can also be applied to the static Landau-Lifshitz equations.


2020 ◽  
Vol 0 (0) ◽  
Author(s):  
Aicha Benkartab ◽  
Ahmed Mohammed Cherif

AbstractWe construct biharmonic non-harmonic maps between Riemannian manifolds (M, g) and (N, h) by first making the ansatz that φ : (M, g) → (N, h) be a harmonic map and then deforming the metric on N by{\tilde h_\alpha } = \alpha h + \left( {1 - \alpha } \right){\rm{d}}f \otimes {\rm{d}}fto render φ biharmonic, where f is a smooth function with gradient of constant norm on (N, h) and α ∈ (0, 1). We construct new examples of biharmonic non-harmonic maps, and we characterize the biharmonicity of some curves on Riemannian manifolds.


Author(s):  
Ahmad Afuni

AbstractWe establish new local regularity results for the harmonic map and Yang–Mills heat flows on Riemannian manifolds of dimension greater than 2 and 4, respectively, obtaining criteria for the smooth local extensibility of these flows. As a corollary, we obtain new characterisations of singularity formation and use this to obtain a local estimate on the Hausdorff measure of the singular sets of these flows at the first singular time. Finally, we show that smooth blow-ups at rapidly forming singularities of these flows are necessarily nontrivial and admit a positive lower bound on their heat ball energies. These results crucially depend on some local monotonicity formulæ for these flows recently established by Ecker (Calc Var Partial Differ Equ 23(1):67–81, 2005) and the Afuni (Calc Var 555(1):1–14, 2016; Adv Calc Var 12(2):135–156, 2019).


2021 ◽  
Vol 2021 (1) ◽  
Author(s):  
Jing Li ◽  
Shuxiang Feng ◽  
Peibiao Zhao

AbstractIn this paper, we establish a finiteness theorem for $L^{p}$ L p harmonic 1-forms on a locally conformally flat Riemannian manifold under the assumptions on the Schrödinger operators involving the squared norm of the traceless Ricci form. This result can be regarded as a generalization of Han’s result on $L^{2}$ L 2 harmonic 1-forms.


1994 ◽  
Vol 36 (1) ◽  
pp. 77-80 ◽  
Author(s):  
Leung-Fu Cheung ◽  
Pui-Fai Leung

For each p ∈ [2, ∞)a p-harmonic map f:Mm→Nn is a critical point of the p-energy functionalwhere Mm is a compact and Nn a complete Riemannian manifold of dimensions m and n respectively. In a recent paper [3], Takeuchi has proved that for a certain class of simply-connected δ-pinched Nn and certain type of hypersurface Nn in ℝn+1, the only stable p-harmonic maps for any compact Mm are the constant maps. Our purpose in this note is to establish the following theorem which complements Takeuchi's results.


Author(s):  
Frank C. Park ◽  
Bahram Ravani

Abstract In this article we generalize the concept of Bézier curves to curved spaces, and illustrate this generalization with an application in kinematics. We show how De Casteljau’s algorithm for constructing Bézier curves can be extended in a natural way to Riemannian manifolds. We then consider a special class of Riemannian manifold, the Lie groups. Because of their algebraic group structure Lie groups admit an elegant, efficient recursive algorithm for constructing Bézier curves. Spatial displacements of a rigid body also form a Lie group, and can therefore be interpolated (in the Bezier sense) using this recursive algorithm. We apply this algorithm to the kinematic problem of trajectory generation or motion interpolation for a moving rigid body.


2010 ◽  
Vol 2010 ◽  
pp. 1-11 ◽  
Author(s):  
Anna Maria Micheletti ◽  
Angela Pistoia

Given thatis a smooth compact and symmetric Riemannian -manifold, , we prove a multiplicity result for antisymmetric sign changing solutions of the problem in . Here if and if .


Sign in / Sign up

Export Citation Format

Share Document