scholarly journals Equivalence classes of functions on finite sets

1982 ◽  
Vol 5 (4) ◽  
pp. 745-762
Author(s):  
Chong-Yun Chao ◽  
Caroline I. Deisher

By using Pólya's theorem of enumeration and de Bruijn's generalization of Pólya's theorem, we obtain the numbers of various weak equivalence classes of functions inRDrelative to permutation groupsGandHwhereRDis the set of all functions from a finite setDto a finite setR,Gacts onDandHacts onR. We present an algorithm for obtaining the equivalence classes of functions counted in de Bruijn's theorem, i.e., to determine which functions belong to the same equivalence class. We also use our algorithm to construct the family of non-isomorphicfm-graphs relative to a given group.

2001 ◽  
Vol Vol. 4 no. 2 ◽  
Author(s):  
Eugene Curtin

International audience In this paper we apply Polya's Theorem to the problem of enumerating Cayley graphs on permutation groups up to isomorphisms induced by conjugacy in the symmetric group. We report the results of a search of all three-regular Cayley graphs on permutation groups of degree at most nine for small diameter graphs. We explore several methods of constructing covering graphs of these Cayley graphs. Examples of large graphs with small diameter are obtained.


2002 ◽  
Vol 65 (2) ◽  
pp. 277-288 ◽  
Author(s):  
Gil Kaplan ◽  
Arieh Lev

Let G be a transitive permutation group acting on a finite set of order n. We discuss certain types of transversals for a point stabiliser A in G: free transversals and global transversals. We give sufficient conditions for the existence of such transversals, and show the connection between these transversals and combinatorial problems of decomposing the complete directed graph into edge disjoint cycles. In particular, we classify all the inner-transitive Oberwolfach factorisations of the complete directed graph. We mention also a connection to Frobenius theorem.


1956 ◽  
Vol 21 (3) ◽  
pp. 304-308 ◽  
Author(s):  
H. G. Rice

The two results of this paper (a theorem and an example) are applications of a device described in section 1. Our notation is that of [4], with which we assume familiarity. It may be worth while to mention in particular the function Φ(n, x) which recursively enumerates the partial recursive functions of one variable, the Cantor enumerating functions J(x, y), K(x), L(x), and the classes F and Q of r.e. (recursively enumerable) and finite sets respectively.It is possible to “give” a finite set in a way which conveys the maximum amount of information; this may be called “giving explicitly”, and it requires that in addition to an effective enumeration or decision procedure for the set we give its cardinal number. It is sometimes desired to enumerate effectively an infinite class of finite sets, each given explicitly (e.g., [4] p. 360, or Dekker [1] p. 497), and we suggest here a device for doing this.We set up an effective one-to-one correspondence between the finite sets of non-negative integers and these integers themselves: the integer , corresponds to the set αi, = {a1, a2, …, an} and inversely. α0 is the empty set. Clearly i can be effectively computed from the elements of αi and its cardinal number.


2015 ◽  
Vol 29 (1) ◽  
pp. 93-117
Author(s):  
Mieczysław Kula ◽  
Małgorzata Serwecińska

AbstractThe paper is devoted to the communication complexity of lattice operations in linearly ordered finite sets. All well known techniques ([4, Chapter 1]) to determine the communication complexity of the infimum function in linear lattices disappoint, because a gap between the lower and upper bound is equal to O(log2n), where n is the cardinality of the lattice. Therefore our aim will be to investigate the communication complexity of the function more carefully. We consider a family of so called interval protocols and we construct the interval protocols for the infimum. We prove that the constructed protocols are optimal in the family of interval protocols. It is still open problem to compute the communication complexity of constructed protocols but the numerical experiments show that their complexity is less than the complexity of known protocols for the infimum function.


2007 ◽  
Vol 81 (1-2) ◽  
pp. 247-259 ◽  
Author(s):  
I. P. Rochev

Author(s):  
Joaquín Moraga

Abstract In this article, we prove a local implication of boundedness of Fano varieties. More precisely, we prove that $d$ -dimensional $a$ -log canonical singularities with standard coefficients, which admit an $\epsilon$ -plt blow-up, have minimal log discrepancies belonging to a finite set which only depends on $d,\,a$ and $\epsilon$ . This result gives a natural geometric stratification of the possible mld's in a fixed dimension by finite sets. As an application, we prove the ascending chain condition for minimal log discrepancies of exceptional singularities. We also introduce an invariant for klt singularities related to the total discrepancy of Kollár components.


1967 ◽  
Vol 19 ◽  
pp. 792-799 ◽  
Author(s):  
J. Sheehan

In 1927 J. H. Redfield (9) stressed the intimate interrelationship between the theory of finite groups and combinatorial analysis. With this in mind we consider Pólya's theorem (7) and the Redfield-Read superposition theorem (8, 9) in the context of the theory of permutation representations of finite groups. We show in particular how the Redfield-Read superposition theorem can be deduced as a special case from a simple extension of Pólya's theorem. We give also a generalization of the superposition theorem expressed as the multiple scalar product of certain group characters. In a later paper we shall give some applications of this generalization.


2020 ◽  
Vol 296 (3-4) ◽  
pp. 1157-1183 ◽  
Author(s):  
Jenny August

Abstract We prove that the stable endomorphism rings of rigid objects in a suitable Frobenius category have only finitely many basic algebras in their derived equivalence class and that these are precisely the stable endomorphism rings of objects obtained by iterated mutation. The main application is to the Homological Minimal Model Programme. For a 3-fold flopping contraction $$f :X \rightarrow {\mathrm{Spec}\;}\,R$$ f : X → Spec R , where X has only Gorenstein terminal singularities, there is an associated finite dimensional algebra $$A_{{\text {con}}}$$ A con known as the contraction algebra. As a corollary of our main result, there are only finitely many basic algebras in the derived equivalence class of $$A_{\text {con}}$$ A con and these are precisely the contraction algebras of maps obtained by a sequence of iterated flops from f. This provides evidence towards a key conjecture in the area.


Sign in / Sign up

Export Citation Format

Share Document