frobenius category
Recently Published Documents


TOTAL DOCUMENTS

9
(FIVE YEARS 4)

H-INDEX

2
(FIVE YEARS 1)

Author(s):  
Driss Bennis ◽  
Rachid El Maaouy ◽  
J. R. García Rozas ◽  
Luis Oyonarte

It is now well known that the conditions used by Auslander to define the Gorenstein projective modules on Noetherian rings are independent. Recently, Ringel and Zhang adopted a new approach in investigating Auslander’s conditions. Instead of looking for examples, they investigated rings on which certain implications between Auslander’s conditions hold. In this paper, we investigate the relative counterpart of Auslander’s conditions. So, we extend Ringel and Zhang’s work and introduce other concepts. Namely, for a semidualizing module [Formula: see text], we introduce weakly [Formula: see text]-Gorenstein and partially [Formula: see text]-Gorenstein rings as rings representing relations between the relative counterpart of Auslander’s conditions. Moreover, we introduce a relative notion of the well-known Frobenius category. We show how useful are [Formula: see text]-Frobenius categories in characterizing weakly [Formula: see text]-Gorenstein and partially [Formula: see text]-Gorenstein rings.


2020 ◽  
Vol 549 ◽  
pp. 249-267
Author(s):  
Jian Feng ◽  
Peng Guo ◽  
Lin Zhu
Keyword(s):  

2020 ◽  
Vol 296 (3-4) ◽  
pp. 1157-1183 ◽  
Author(s):  
Jenny August

Abstract We prove that the stable endomorphism rings of rigid objects in a suitable Frobenius category have only finitely many basic algebras in their derived equivalence class and that these are precisely the stable endomorphism rings of objects obtained by iterated mutation. The main application is to the Homological Minimal Model Programme. For a 3-fold flopping contraction $$f :X \rightarrow {\mathrm{Spec}\;}\,R$$ f : X → Spec R , where X has only Gorenstein terminal singularities, there is an associated finite dimensional algebra $$A_{{\text {con}}}$$ A con known as the contraction algebra. As a corollary of our main result, there are only finitely many basic algebras in the derived equivalence class of $$A_{\text {con}}$$ A con and these are precisely the contraction algebras of maps obtained by a sequence of iterated flops from f. This provides evidence towards a key conjecture in the area.


Author(s):  
Jiangsheng Hu ◽  
Yuxian Geng ◽  
Jinyong Wu ◽  
Huanhuan Li

Let [Formula: see text] be a commutative Noetherian ring and [Formula: see text] a semidualizing [Formula: see text]-module. We obtain an exact structure [Formula: see text] and prove that the full subcategory [Formula: see text] of [Formula: see text] is a Frobenius category with [Formula: see text] the subcategory of projective and injective objects, where [Formula: see text] and [Formula: see text] (respectively, [Formula: see text]) is the subcategory of [Formula: see text]-Gorenstein flat (respectively, [Formula: see text]-flat [Formula: see text]-cotorsion) [Formula: see text]-modules. Then the stable category [Formula: see text] of [Formula: see text] and the singularity category [Formula: see text] of [Formula: see text] are also considered. As a consequence, we get that there is a Buchweitz’s equivalence [Formula: see text] if and only if [Formula: see text] is a part of some AB-context.


2018 ◽  
Vol 25 (03) ◽  
pp. 377-386
Author(s):  
Miantao Liu ◽  
Ruixin Li ◽  
Nan Gao

Let Λ be an algebra of finite Cohen-Macaulay type and Γ its Cohen-Macaulay Auslander algebra. We are going to characterize the morphism category Mor(Λ-Gproj) of Gorenstein-projective Λ-modules in terms of the module category Γ-mod by a categorical equivalence. Based on this, we obtain that some factor category of the epimorphism category Epi(Λ-Gproj) is a Frobenius category, and also, we clarify the relations among Mor(Λ-Gproj), Mor(T2Λ-Gproj) and Mor(Δ-Gproj), where T2(Λ) and Δ are respectively the lower triangular matrix algebra and the Morita ring closely related to Λ.


2016 ◽  
Vol 23 (01) ◽  
pp. 1-14
Author(s):  
Ming Lu

Let 𝒞 be a triangulated category which has Auslander-Reiten triangles, and ℛ a functorially finite rigid subcategory of 𝒞. It is well known that there exist Auslander-Reiten sequences in mod ℛ. In this paper, we give explicitly the relations between the Auslander-Reiten translations, sequences in mod ℛ and the Auslander-Reiten functors, triangles in 𝒞, respectively. Furthermore, if 𝒯 is a cluster-tilting subcategory of 𝒞 and mod 𝒯 is a Frobenius category, we also get the Auslander-Reiten functor and the translation functor of mod 𝒯 corresponding to the ones in 𝒞. As a consequence, we get that if the quotient of a d-Calabi-Yau triangulated category modulo a cluster tilting subcategory is Frobenius, then its stable category is (2d-1)-Calabi-Yau. This result was first proved by Keller and Reiten in the case d=2, and then by Dugas in the general case, using different methods.


2014 ◽  
Vol 151 (3) ◽  
pp. 502-534 ◽  
Author(s):  
Martin Kalck ◽  
Osamu Iyama ◽  
Michael Wemyss ◽  
Dong Yang

AbstractWe give sufficient conditions for a Frobenius category to be equivalent to the category of Gorenstein projective modules over an Iwanaga–Gorenstein ring. We then apply this result to the Frobenius category of special Cohen–Macaulay modules over a rational surface singularity, where we show that the associated stable category is triangle equivalent to the singularity category of a certain discrepant partial resolution of the given rational singularity. In particular, this produces uncountably many Iwanaga–Gorenstein rings of finite Gorenstein projective type. We also apply our method to representation theory, obtaining Auslander–Solberg and Kong type results.


2014 ◽  
Vol 21 (02) ◽  
pp. 195-206 ◽  
Author(s):  
Shengyong Pan

Let A be a finite dimensional algebra over a field k. We consider a subfunctor F of [Formula: see text], which has enough projectives and injectives such that [Formula: see text] is of finite type, where [Formula: see text] denotes the set of F-projectives. One can get the relative derived category [Formula: see text] of A-mod. For an F-self-orthogonal module TF, we discuss the relation between the relative quotient triangulated category [Formula: see text] and the relative stable category of the Frobenius category of TF-Cohen-Macaulay modules. In particular, for an F-Gorenstein algebra A and an F-tilting A-module TF, we get a triangle equivalence between [Formula: see text] and the relative stable category of TF-Cohen-Macaulay modules. This gives the relative version of a result of Chen and Zhang.


2011 ◽  
Vol 18 (1) ◽  
pp. 125-137 ◽  
Author(s):  
Xiao-Wu Chen
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document