Meloidogyne species are one of the most important groups of plant-parasitic nematodes globally because of their ability to damage most cultivated plants. Although they are widespread and economically important, there are limited control measures to combat these nematodes. New nonfumigant nematicides have been discovered that have the potential to be widely utilized for the management of plant-parasitic nematodes. Because of the longer half-lives in soil and lower toxicity of new nematicides compared with traditional fumigant and nonfumigant nematicides, understanding how nematodes respond to sublethal doses of nematicides is imperative to understanding whether nematicide resistance has the potential to develop. Characterizing responses of nematodes to sublethal doses will provide the foundation for future work, such as gene expression studies. In this study, the nematicides oxamyl (Vydate), fluazaindolizine (Salibro), fluensulfone (Nimitz), and fluopyram (Velum), were evaluated to understand how sublethal doses affect the fecundity and mobility of Meloidogyne incognita second-stage juveniles (J2). Using a microwell assay system, dose-response curves for each nematicide were established for M. incognita J2. Fluopyram was the most toxic nematicide, with effective doses up to 230 times lower than that of other nematicides. The other nematicides had predicted ED50 values (effective doses that resulted in 50% of the population becoming inactive) of 89.4, 131.7, and 180.6 ppm for oxamyl, fluensulfone, and fluazaindolizine, respectively. The 24-h ED50 of each nematicide was then used in both motility and infectivity assays. The motility and activity of M. incognita J2 exposed to ED50 doses of fluazaindolizine and fluensulfone was significantly reduced, with nematodes initially being motile but eventually becoming inactive. However, the motility of M. incognita J2 exposed to ED50 doses of fluopyram and oxamyl was not different from a water control. In a pot assay, M. incognita J2 exposed to ED50 doses of fluazaindolizine, oxamyl, and fluensulfone were unable to reproduce on tomato, with reproduction factors (RF = final population density/initial population density) of 0 to 0.03. Fluopyram did not reduce reproduction of M. incognita, with a mean RF of 38.7 ± 4.5, which was similar to the RF of 46.3 ± 4.6 for the water control. This study is the first comprehensive evaluation of M. incognita activity, motility, and fecundity after exposure to the traditional nematicide, oxamyl, as well as three new nematicides, fluazaindolizine, fluopyram, and fluensulfone.