Effect of Overheating and Incorrect Material Selection on Power Plant Superheater Tube

2021 ◽  
Vol 13 (3) ◽  
pp. 407-416
Author(s):  
Essam R. I. Mahmoud ◽  
Vineet Tirth ◽  
Ali Algahtani ◽  
A. Aljabri ◽  
Sohaib Z. Khan

The present investigation portrays the tube failure in the superheater used in the power plants. The failure occurred after only three months of operation, by longitudinal fish-mouth rupture. The operating pressure of the object boiler is 192 bar while the temperature of its superheater steam is 540 °C. The failed tubes were fabricated from standard Si killed carbon steel. Many longitudinal parallel fine crack-like grooves were detected at the outer surface of the rupture area. Metallurgical examinations revealed that the failed tube remained subjected to overheating for the short-term. According to the analysis of the failed tubes, the temperature reached over 600 °C by insufficient coolant flow or unpredicted operating conditions. The carbon steel emerged as an underperforming material for the applications in superheater tubes, and it is highly recommended to replace the carbon steel by a high-grade Cr-Mo steel.

Author(s):  
Graeme G. King ◽  
Satish Kumar

Masdar is developing several carbon capture projects from power plants, smelters, steel works, industrial facilities and oil and gas processing plants in Abu Dhabi in a phased series of projects. Captured CO2 will be transported in a new national CO2 pipeline network with a nominal capacity of 20×106 T/y to oil reservoirs where it will be injected for reservoir management and sequestration. Design of the pipeline network considered three primary factors in the selection of wall thickness and toughness, (a) steady and transient operating conditions, (b) prevention of longitudinal ductile fractures and (c) optimization of total project owning and operating costs. The paper explains how the three factors affect wall thickness and toughness. It sets out code requirements that must be satisfied when choosing wall thickness and gives details of how to calculate toughness to prevent propagation of long ductile fracture in CO2 pipelines. It then uses cost optimization to resolve contention between the different requirements and arrive at a safe and economical pipeline design. The design work selected a design pressure of 24.5 MPa, well above the critical point for CO2 and much higher than is normally seen in conventional oil and gas pipelines. Despite its high operating pressure, the proposed network will be one of the safest pipeline systems in the world today.


Author(s):  
Na Ma ◽  
Li Wang ◽  
Jinguang Qin

Wall-thinning investigation of three carbon steel pipe samples from secondary section of nuclear power plants has been carried out in this paper. The operating conditions of the three pipe samples are quite different, which leads to the different wall-thinning reasons and characteristics of the pipes. The chemical compositions of the steel materials, the stereomicroscope examinations, SEM examinations, as well as the XRD analysis are performed. The results show that: The wall-thinning of No.1 elbow was caused by erosion corrosion; the wall-thinning of No.2 elbow was caused by flow accelerated corrosion; the wall-thinning and crevasse of No.3 orifice plate was caused by cavitations. Measures to solve the wall-thinning problems of different pipes are also given in this paper.


2008 ◽  
Vol 130 (2) ◽  
Author(s):  
Jesús M. Lata ◽  
Manuel Rodríguez ◽  
Mónica Álvarez de Lara

Molten salt technology represents nowadays the most cost-effective technology for electricity generation for stand-alone solar power plants. Although this technology can be applied to both concentrating technologies, parabolic through and central receiver systems (CRSs), CRS technology can take advantages from its higher concentration, allowing to work at higher temperatures and therefore with a reduction in the size and cost of the storage system. The receiver system is the “door” for which the energy passes from the field collector to the thermal-electric cycle; it represents, therefore, the core of the CRS and its performance directly affects plant production. Starting from the published lessons from SOLAR TWO receiver technology, the validation of an improved receiver for molten salt technology was assumed as part of the SOLAR TRES solar thermal power commercial plant development. Main challenges for the new receiver were to increase its allowable peak flux up to 1MW∕m2 in order to maximize the thermal efficiency of the CRS solar power plant, and to improve its safe life without limiting the incident fluxes that the field of heliostats is able to deliver with an optimized pointing strategy. Several advanced features in geometric and thermodynamic aspects and in its material selection have been implemented on the receiver. With the results of a sensitivity analysis carried out with an own code developed by SENER (SENREC), a prototype receiver panel was designed, fabricated, and installed in a proper test bed at the PSA. Test validation on this panel was carried out in 2007. The initial test results show a very good behavior of the prototype receiver, which allows to anticipate that the objectives of its design can be fulfilled. SENER and CIEMAT have joined forces to face up the challenge of sizing and designing a new molten salt receiver of high thermal efficiency, able to operate at high fluxes without compromising its durability (at least 25years). Main challenges for the new receiver design were to optimize the receiver dimensions and receiver tube sizes and material selection to surpass the operating conditions in the new plants with respect to SOLAR TWO.


R&D Journal ◽  
2021 ◽  
Author(s):  
N. Basson ◽  
W. F. Fuls

ABSTRACT A water-wedge is often suspected to be the root cause for short-term overheating in fossil-fuelled boiler superheaters. However, it can be argued that evaporation of the water-wedge would cool the tube sufficiently and prevent overheating. This study aims to determine if the thermo-physical conditions occurring at low loads support this claim by studying the transient behaviour of a representative superheater segment under postulated conditions. A flow model was constructed to facilitate direct comparison with a boiler pendant superheater of a full-scale fossil-fuelled power plant. Several scenarios of water-wedges sustained by attemperation spraywater were simulated at low load operating conditions. The temperature evolution of the tube wall was tracked and, together with calculated equivalent stresses including thermal stress, was compared to the yield strength of the material. The results show that the stresses exerted over the tube wall and throughout the tube length are not sufficient to overcome the yield strength of the tube material, even for an aged tube under severe process conditions of boiler overfiring. Evaporation of the water-wedge provides sufficient cooling to the superheater tube to prevent failure. It was concluded that water-wedging alone is unlikely to be the root cause of short-term overheating at low boiler loads. Additional keywords: Short-term overheating; water-wedge; boiler superheater tube; attemperation; thermal stress, evaporation.


Machines ◽  
2021 ◽  
Vol 9 (3) ◽  
pp. 47
Author(s):  
Pavel Ilyushin ◽  
Aleksandr Kulikov ◽  
Konstantin Suslov ◽  
Sergey Filippov

Modern gas-turbine units (GTUs) and gas-reciprocating units (GRUs) have found a wide use at power plants, including distributed generation facilities, running on gaseous fuel. The design features of these generating units have a considerable effect on the nature and parameters of transient processes due to emergency disturbances in the adjacent network. The study shows that single-shaft gas-turbine and gas-reciprocating units do not allow even short-term considerable frequency drops. These schemes and operating conditions arise due to emergency active power shortages when the connection between the power plant and the power system weakens due to repair conditions or islanded operation. The paper presents the results of transient process calculations for operating power plants (distributed generation facilities), which make it possible to identify the unfavorable properties of GTUs and GRUs. The results show that two-shaft (three-shaft) GTUs and GRUs can switch to out-of-step conditions even when short-circuits in the adjacent network are cleared with high-speed relay protection devices. The features of out-of-step conditions and the admissibility of their short-term duration for the spontaneous restoration of generators’ synchronization are considered. The findings suggest that considering the fundamental design features of generating units provides informed technical decisions on equipping power plants (distributed generation (DG) facilities) and the adjacent network with efficient emergency control systems.


TAPPI Journal ◽  
2014 ◽  
Vol 13 (8) ◽  
pp. 65-78 ◽  
Author(s):  
W.B.A. (SANDY) SHARP ◽  
W.J. JIM FREDERICK ◽  
JAMES R. KEISER ◽  
DOUGLAS L. SINGBEIL

The efficiencies of biomass-fueled power plants are much lower than those of coal-fueled plants because they restrict their exit steam temperatures to inhibit fireside corrosion of superheater tubes. However, restricting the temperature of a given mass of steam produced by a biomass boiler decreases the amount of power that can be generated from this steam in the turbine generator. This paper examines the relationship between the temperature of superheated steam produced by a boiler and the quantity of power that it can generate. The thermodynamic basis for this relationship is presented, and the value of the additional power that could be generated by operating with higher superheated steam temperatures is estimated. Calculations are presented for five plants that produce both steam and power. Two are powered by black liquor recovery boilers and three by wood-fired boilers. Steam generation parameters for these plants were supplied by industrial partners. Calculations using thermodynamics-based plant simulation software show that the value of the increased power that could be generated in these units by increasing superheated steam temperatures 100°C above current operating conditions ranges between US$2,410,000 and US$11,180,000 per year. The costs and benefits of achieving higher superheated steam conditions in an individual boiler depend on local plant conditions and the price of power. However, the magnitude of the increased power that can be generated by increasing superheated steam temperatures is so great that it appears to justify the cost of corrosion-mitigation methods such as installing corrosion-resistant materials costing far more than current superheater alloys; redesigning biomassfueled boilers to remove the superheater from the flue gas path; or adding chemicals to remove corrosive constituents from the flue gas. The most economic pathways to higher steam temperatures will very likely involve combinations of these methods. Particularly attractive approaches include installing more corrosion-resistant alloys in the hottest superheater locations, and relocating the superheater from the flue gas path to an externally-fired location or to the loop seal of a circulating fluidized bed boiler.


1996 ◽  
Vol 34 (9) ◽  
pp. 149-156 ◽  
Author(s):  
C. Ratanatamskul ◽  
K. Yamamoto ◽  
T. Urase ◽  
S. Ohgaki

The recent development of new generation LPRO or nanofiltration membranes have received attraction for application in the field of wastewater and water treatment through an increasingly stringent regulation for drinking purpose and water reclamation. In this research, the application on treatment of anionic pollutants (nitrate, nitrite, phosphate, sulfate and chloride ions) have been investigated as functions of transmembrane pressure, crossflow velocity and temperature under very much lower pressure operation range (0.49 to 0.03 MPa) than any other previous research used to do. Negative rejection was also observed under very much low range of operating pressure in the case of membrane type NTR-7250. Moreover, the extended Nernst-Planck model was used for analysis of the experimental data of the rejection of nitrate, nitrite and chloride ions in single solution by considering effective charged density of the membranes.


1992 ◽  
Vol 26 (5-6) ◽  
pp. 1355-1363 ◽  
Author(s):  
C-W. Kim ◽  
H. Spanjers ◽  
A. Klapwijk

An on-line respiration meter is presented to monitor three types of respiration rates of activated sludge and to calculate effluent and influent short term biochemical oxygen demand (BODst) in the continuous activated sludge process. This work is to verify if the calculated BODst is reliable and the assumptions made in the course of developing the proposed procedure were acceptable. A mathematical model and a dynamic simulation program are written for an activated sludge model plant along with the respiration meter based on mass balances of BODst and DO. The simulation results show that the three types of respiration rate reach steady state within 15 minutes under reasonable operating conditions. As long as the respiration rate reaches steady state the proposed procedure calculates the respiration rate that is equal to the simulated. Under constant and dynamic BODst loading, the proposed procedure is capable of calculating the effluent and influent BODst with reasonable accuracy.


2020 ◽  
Vol 17 (7) ◽  
pp. 768-779
Author(s):  
Natarajan Narayanan ◽  
Vasudevan Mangottiri ◽  
Kiruba Narayanan

Microbial Fuel Cells (MFCs) offer a sustainable solution for alternative energy production by employing microorganisms as catalysts for direct conversion of chemical energy of feedstock into electricity. Electricity from urine (urine-tricity) using MFCs is a promising cost-effective technology capable of serving multipurpose benefits - generation of electricity, waste alleviation, resource recovery and disinfection. As an abundant waste product from human and animal origin with high nutritional values, urine is considered to be a potential source for extraction of alternative energy in the coming days. However, developments to improve power generation from urine-fed MFCs at reasonable scales still face many challenges such as non-availability of sustainable materials, cathodic limitations, and low power density. The aim of this paper was to critically evaluate the state-of-the-art research and developments in urine-fed MFCs over the past decade (2008-2018) in terms of their construction (material selection and configuration), modes of operation (batch, continuous, cascade, etc.) and performance (power generation, nutrient recovery and waste treatment). This review identifies the preference for sources of urine for MFC application from human beings, cows and elephants. Among these, human urine-fed MFCs offer a variety of applications to practice in the real-world scenario. One key observation is that, effective disinfection can be achieved by optimizing the operating conditions and MFC configurations without compromising on performance. In essence, this review demarcates the scope of enhancing the reuse potential of urine for renewable energy generation and simultaneously achieving resource recovery.


2019 ◽  
Vol 13 ◽  
Author(s):  
Haisheng Li ◽  
Wenping Wang ◽  
Yinghua Chen ◽  
Xinxi Zhang ◽  
Chaoyong Li

Background: The fly ash produced by coal-fired power plants is an industrial waste. The environmental pollution problems caused by fly ash have been widely of public environmental concern. As a waste of recoverable resources, it can be used in the field of building materials, agricultural fertilizers, environmental materials, new materials, etc. Unburned carbon content in fly ash has an influence on the performance of resource reuse products. Therefore, it is the key to remove unburned carbon from fly ash. As a physical method, triboelectrostatic separation technology has been widely used because of obvious advantages, such as high-efficiency, simple process, high reliability, without water resources consumption and secondary pollution. Objective: The related patents of fly ash triboelectrostatic separation had been reviewed. The structural characteristics and working principle of these patents are analyzed in detail. The results can provide some meaningful references for the improvement of separation efficiency and optimal design. Methods: Based on the comparative analysis for the latest patents related to fly ash triboelectrostatic separation, the future development is presented. Results: The patents focused on the charging efficiency and separation efficiency. Studies show that remarkable improvements have been achieved for the fly ash triboelectrostatic separation. Some patents have been used in industrial production. Conclusion: According to the current technology status, the researches related to process optimization and anti-interference ability will be beneficial to overcome the influence of operating conditions and complex environment, and meet system security requirements. The intelligent control can not only ensure the process continuity and stability, but also realize the efficient operation and management automatically. Meanwhile, the researchers should pay more attention to the resource utilization of fly ash processed by triboelectrostatic separation.


Sign in / Sign up

Export Citation Format

Share Document