The Influence of Amazon Rainfall on the Atlantic ITCZ through Convectively Coupled Kelvin Waves

2007 ◽  
Vol 20 (7) ◽  
pp. 1188-1201 ◽  
Author(s):  
Hui Wang ◽  
Rong Fu

Abstract Using outgoing longwave radiation (OLR) and Tropical Rainfall Measuring Mission (TRMM) daily rain-rate data, systematic changes in intensity and location of the Atlantic intertropical convergence zone (ITCZ) were detected along the equator during boreal spring. It is found that the changes in convection over the tropical Atlantic may be induced by deep convection in equatorial South America. Lagged regression analyses demonstrate that the anomalies of convection developed over the land propagate eastward across the Atlantic and then into Africa. The eastward-propagating disturbances appear to be convectively coupled Kelvin waves with a period of 6–7.5 days and a phase speed of around 15 m s−1. These waves modulate the intensity and location of the convection in the tropical Atlantic and result in a zonal variation of the Atlantic ITCZ on synoptic time scales. The convectively coupled Kelvin wave has substantial signals in both the lower and upper troposphere. Both a reanalysis dataset and the Quick Scatterometer (QuikSCAT) ocean surface wind are used to characterize the Kelvin wave. This study suggests that synoptic-scale variation of the Atlantic ITCZ may be linked to precipitation anomalies in South America through the convectively coupled Kelvin wave. The results imply that the changes of Amazon convection could contribute to the large variability of the tropical Atlantic ITCZ observed during boreal spring.

Ocean Science ◽  
2018 ◽  
Vol 14 (4) ◽  
pp. 849-869 ◽  
Author(s):  
Gaëlle Herbert ◽  
Bernard Bourlès

Abstract. The impact of boreal spring intraseasonal wind bursts on sea surface temperature variability in the eastern tropical Atlantic Ocean in 2005 and 2006 is investigated using numerical simulation and observations. We especially focus on the coastal region east of 5° E and between the Equator and 7° S that has not been studied in detail so far. For both years, the southerly wind anomalies induced cooling episodes through (i) upwelling processes, (ii) vertical mixing due to the vertical shear of the current, and for some particular events (iii) a decrease in incoming surface shortwave radiation. The strength of the cooling episodes was modulated by subsurface conditions affected by the arrival of Kelvin waves from the west influencing the depth of the thermocline. Once impinging the eastern boundary, the Kelvin waves excited westward-propagating Rossby waves, which combined with the effect of enhanced westward surface currents contributed to the westward extension of the cold water. A particularly strong wind event occurred in mid-May 2005 and caused an anomalous strong cooling off Cape Lopez and in the whole eastern tropical Atlantic Ocean. From the analysis of oceanic and atmospheric conditions during this particular event, it appears that anomalously strong boreal spring wind strengthening associated with anomalously strong Hadley cell activity prematurely triggered the onset of coastal rainfall in the northern Gulf of Guinea, making it the earliest over the 1998–2008 period. No similar atmospheric conditions were observed in May over the 1998–2008 period. It is also found that the anomalous oceanic and atmospheric conditions associated with the event exerted a strong influence on rainfall off northeast Brazil. This study highlights the different processes through which the wind power from the South Atlantic is brought to the ocean in the Gulf of Guinea and emphasizes the need to further document and monitor the South Atlantic region.


2009 ◽  
Vol 22 (9) ◽  
pp. 2405-2421 ◽  
Author(s):  
Huei-Ping Huang ◽  
Andrew W. Robertson ◽  
Yochanan Kushnir ◽  
Shiling Peng

Abstract Hindcast experiments for the tropical Atlantic sea surface temperature (SST) gradient G1, defined as tropical North Atlantic SST anomaly minus tropical South Atlantic SST anomaly, are performed using an atmospheric general circulation model coupled to a mixed layer ocean over the Atlantic to quantify the contributions of the El Niño–Southern Oscillation (ENSO) forcing and the preconditioning in the Atlantic to G1 in boreal spring. The results confirm previous observational analyses that, in the years with a persistent ENSO SST anomaly from boreal winter to spring, the ENSO forcing plays a primary role in determining the tendency of G1 from winter to spring and the sign of G1 in late spring. In the hindcasts, the initial perturbations in Atlantic SST in boreal winter are found to generally persist beyond a season, leaving a secondary but nonnegligible contribution to the predicted Atlantic SST gradient in spring. For 1993/94, a neutral year with a large preexisting G1 in winter, the hindcast using the information of Atlantic preconditioning alone is found to reproduce the observed G1 in spring. The seasonal predictability in precipitation over South America is examined in the hindcast experiments. For the recent events that can be validated with high-quality observations, the hindcasts produced dryness in boreal spring 1983, wetness in spring 1996, and wetness in spring 1994 over northern Brazil that are qualitatively consistent with observations. An inclusion of the Atlantic preconditioning is found to help the prediction of South American rainfall in boreal spring. For the ENSO years, discrepancies remain between the hindcast and observed precipitation anomalies over northern and equatorial South America, an error that is partially attributed to the biased atmospheric response to ENSO forcing in the model. The hindcast of the 1993/94 neutral year does not suffer this error. It constitutes an intriguing example of useful seasonal forecast of G1 and South American rainfall anomalies without ENSO.


2018 ◽  
Vol 31 (10) ◽  
pp. 3755-3763 ◽  
Author(s):  
Zhenning Li ◽  
Song Yang ◽  
Xiaoming Hu ◽  
Wenjie Dong ◽  
Bian He

Abstract In this study, El Niño events are classified as long El Niño (LE) events and short El Niño (SE) events based on their durations, and the characteristics of the early stages of these events are investigated. Results indicate that LE events tend to start earlier compared to SE events, initiating in boreal spring and peaking in winter. Their early occurrence is attributed to the western equatorial Pacific (WEP) sea surface wind anomalies that benefit the eastward propagation of warm water by forcing the downwelling Kelvin waves. It is also found that the wind anomalies are potentially induced by the convection anomalies over the WEP in spring. Experiments with a fully coupled climate model forced by convection heating anomalies over the WEP show that El Niño events become stronger and longer after introducing anomalous convection heating. The convection anomalies induce an extensive anomalous westerly belt over the WEP, which charges El Niño by eastward-propagating Kelvin waves. Moreover, induced by the anomalously northward-shifted ITCZ heating and the suppressed heating over the Maritime Continent, the equatorially asymmetric westerly belt reduces the meridional shear of mean easterly wind in the lower latitudes, which maintains an anomalous equatorward Sverdrup transport and in turn prolongs the persistence of El Niño events. A case study of the 2015/16 super El Niño and a regression study by using a rainfall index in critical regions support the above results.


Atmosphere ◽  
2020 ◽  
Vol 11 (4) ◽  
pp. 421
Author(s):  
Chen-Jeih Pan ◽  
Shih-Sian Yang ◽  
Uma Das ◽  
Wei-Sheng Chen

The atmospheric Kelvin wave has been widely studied due to its importance in atmospheric dynamics. Since a long-term climatological study is absent in the literature, we have employed the two-dimensional fast Fourier transform (2D-FFT) method for the 40-year long-term reanalysis of the dataset, ERA-Interim, to investigate the properties of Kelvin waves with wavenumbers 1 (E1) and 2 (E2) at 6–24 days wave periods over the equatorial region of ±10° latitude between a 15 and 45 km altitude during the period 1979–2019. The spatio-temporal variations of the E1 and E2 wave amplitudes were compared to the information of stratospheric quasi-biennial oscillation (QBO), and the wave amplitudes were found to have an inter-QBO cycle variation that was related to sea surface temperature and convections, as well as an intra-QBO cycle variation that was caused by interactions between the waves and stratospheric mean flows. Also, the E1 waves with 6–10 day periods and the E2 waves with 6 days period were observed to penetrate the westerly regime of QBO, which has a thickness less than the vertical wavelengths of those waves, and the waves could further propagate upward to higher altitudes. In a case study of the period 2006–2013, the wave amplitudes showed a good correlation with the Niño 3.4 index, outgoing longwave radiation (OLR), and precipitation during 2006–2013, though this was not the case for the full time series. The present paper is the first report on the 40-year climatology of Kelvin waves, and the morphology of Kelvin waves will help us diagnose the anomalies of wave activity and QBO in the future.


2006 ◽  
Vol 19 (20) ◽  
pp. 5253-5272 ◽  
Author(s):  
Paul E. Roundy ◽  
George N. Kiladis

Abstract The Madden–Julian oscillation (MJO) has been implicated as a major source of the wind stress variability that generates basin-scale Kelvin waves in the equatorial Pacific. One source of debate concerning this relationship is the apparent difference in the frequencies of the two processes. This work utilizes data from the Tropical Atmosphere Ocean (TAO) array of moored buoys along with outgoing longwave radiation data to show by means of a multiple linear regression model and case studies that the frequency discrepancy is due to a systematic decrease in the phase speeds of the Kelvin waves and an increase in the period of the waves toward the east as conditions adjust toward El Niño. Among the potential contributing factors to this phase speed decrease is an apparent air–sea interaction that enhances the wind forcing of some of the Kelvin waves, allowing them to continue to amplify because the propagating wind stress anomaly decelerates to the speed of the developing Kelvin wave instead of the significantly faster speed of the typical MJO. Kelvin waves appear to be most effectively amplified during periods when the temperature gradient above the thermocline across the equatorial central Pacific is strong, the thermocline shoals steeply toward the east in the central Pacific, and/or when the phase speed of the propagating wind stress forcing is closest to that of the Kelvin wave. These conditions tend to occur as the ocean adjusts toward El Niño. Since Kelvin waves are instrumental to the development of El Niño events, isolating the detailed relationship between the waves and the MJO will lead to a better understanding of interannual ocean–atmosphere interactions.


2016 ◽  
Vol 144 (11) ◽  
pp. 4131-4139 ◽  
Author(s):  
Carl J. Schreck

Abstract This study examines how convectively coupled Kelvin waves interact with the semi-Lagrangian circulation of easterly waves to modulate tropical cyclogenesis. Recent studies have shown that fewer tropical cyclones form in the three days before passage of the Kelvin wave’s peak convection and more develop in the three days thereafter. Separately, other studies have identified the recirculation of moisture and vorticity within easterly waves using a semi-Lagrangian frame of reference. That framework is achieved by subtracting the easterly wave phase speed from the earth-relative winds. This study combines these recent findings by testing whether the equatorial westerlies from Kelvin waves can help close the semi-Lagrangian circulation. Past studies have shown that Kelvin waves tilt westward with height in the troposphere such that equatorial westerlies build upward from the surface in the days following the convective peak. This study shows that the easterly wave’s semi-Lagrangian closed circulation grows upward as it intersects the Kelvin wave’s westward tilt. The Kelvin wave’s westerly anomalies reach 500 hPa about three days after the convection has passed, which establishes the deep, vertically aligned easterly wave vortex necessary for tropical cyclogenesis. This study focuses on the eastern Pacific, but similar results are found for the North Atlantic. In other basins, the Kelvin wave accentuates the westerlies from the Madden–Julian oscillation and/or the monsoon trough. Given that Kelvin waves often last weeks and circumnavigate the globe, these results may advance long-range tropical cyclogenesis forecasting.


2012 ◽  
Vol 25 (16) ◽  
pp. 5494-5511 ◽  
Author(s):  
Takeshi Doi ◽  
Gabriel A. Vecchi ◽  
Anthony J. Rosati ◽  
Thomas L. Delworth

Abstract Using two fully coupled ocean–atmosphere models—Climate Model version 2.1 (CM2.1), developed at the Geophysical Fluid Dynamics Laboratory, and Climate Model version 2.5 (CM2.5), a new high-resolution climate model based on CM2.1—the characteristics and sources of SST and precipitation biases associated with the Atlantic ITCZ have been investigated. CM2.5 has an improved simulation of the annual mean and the annual cycle of the rainfall over the Sahel and northern South America, while CM2.1 shows excessive Sahel rainfall and lack of northern South America rainfall in boreal summer. This marked improvement in CM2.5 is due to not only high-resolved orography but also a significant reduction of biases in the seasonal meridional migration of the ITCZ. In particular, the seasonal northward migration of the ITCZ in boreal summer is coupled to the seasonal variation of SST and a subsurface doming of the thermocline in the northeastern tropical Atlantic, known as the Guinea Dome. Improvements in the ITCZ allow for better representation of the coupled processes that are important for an abrupt seasonally phase-locked decay of the interannual SST anomaly in the northern tropical Atlantic. Nevertheless, the differences between CM2.5 and CM2.1 were not sufficient to reduce the warm SST biases in the eastern equatorial region and Angola–Benguela area. The weak bias of southerly winds along the southwestern African coast associated with the excessive southward migration bias of the ITCZ may be a key to improve the warm SST biases there.


2007 ◽  
Vol 20 (8) ◽  
pp. 1487-1503 ◽  
Author(s):  
Flore Mounier ◽  
George N. Kiladis ◽  
Serge Janicot

Abstract The dominant mode of convectively coupled Kelvin waves has been detected over the Atlantic and Africa during northern summer by performing composite analyses on observational fields based on an EOF reconstructed convection index over West Africa. Propagating eastward, many waves originate from the Pacific sector, interact with deep convection of the marine ITCZ over the Atlantic and the continental ITCZ over West and central Africa, and then weaken over East Africa and the Indian Ocean. It has been shown that they are able to modulate the life cycle and track of individual westward-propagating convective systems. Their mean kinematic characteristics comprise a wavelength of 8000 km, and a phase speed of 15 m s−1, leading to a period centered on 6 to 7 days. The African Kelvin wave activity displays large seasonal variability, being highest outside of northern summer when the ITCZ is close to the equator, facilitating the interactions between convection and these equatorially trapped waves. The convective and dynamical patterns identified over the Atlantic and Africa show some resemblance to the theoretical equatorially trapped Kelvin wave solution on an equatorial β plane. Most of the flow is in the zonal direction as predicted by theory, and there is a tendency for the dynamical fields to be symmetric about the equator, even though the ITCZ is concentrated well north of the equator at the full development of the African monsoon. In the upper troposphere and the stratosphere, the temperature contours slope sharply eastward with height, as expected from an eastward-moving heat source that forces a dry Kelvin wave response. It is finally shown that the mean impact of African Kelvin waves on rainfall and convection is of the same level as African easterly waves.


2005 ◽  
Vol 35 (6) ◽  
pp. 1138-1142 ◽  
Author(s):  
John P. Boyd

Abstract The effects of latitudinal shear on equatorial Kelvin waves in the one-and-one-half-layer model are examined through a mixture of perturbation theory and numerical solutions. For waves proportional to exp(ikx), where k is the zonal wavenumber and x is longitude, earlier perturbation theories predicted arbitrarily large distortions in the limit k → ∞. In reality, the distortions are always finite but are very different depending on the sign of the equatorial jet. When the mean jet is westward, the Kelvin wave becomes very, very narrow. When the mean jet flows eastward, the Kelvin wave splits in two with peaks well off the equator and exponentially small amplitude at the equator itself. The phase speed is always a bounded function of k, asymptotically approaching a constant. This condition has important implications for the nonlinear behavior of Kelvin waves. Strong nonlinearity cannot be balanced by contracting longitudinal scale, as in the author’s earlier Korteweg–deVries theory for equatorial solitons: for sufficiently large amplitude, the Kelvin wave must always evolve to a front.


Sign in / Sign up

Export Citation Format

Share Document