Advancing Maritime Transparent Cirrus Detection Using the Advanced Baseline Imager “Cirrus” Band

Author(s):  
Theodore M. McHardy ◽  
James R. Campbell ◽  
David A. Peterson ◽  
Simone Lolli ◽  
Richard L. Bankert ◽  
...  

AbstractWe describe a quantitative evaluation of maritime transparent cirrus cloud detection, which is based on Geostationary Operational Environmental Satellite – 16 (GOES-16) and developed with collocated Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) profiling. The detection algorithm is developed using one month of collocated GOES-16 Advanced Baseline Imager (ABI) Channel 4 (1.378 μm) radiance and CALIOP 0.532 μm column-integrated cloud optical depth (COD). First, the relationships between the clear-sky 1.378 μm radiance, viewing/solar geometry, and precipitable water vapor (PWV) are characterized. Using machine learning techniques, it is shown that the total atmospheric pathlength, proxied by airmass factor (AMF), is a suitable replacement for viewing zenith and solar zenith angles alone, and that PWV is not a significant problem over ocean. Detection thresholds are computed using the Ch. 4 radiance as a function of AMF. The algorithm detects nearly 50% of sub-visual cirrus (COD < 0.03), 80% of transparent cirrus (0.03 < COD < 0.3), and 90% of opaque cirrus (COD > 0.3). Using a conservative radiance threshold results in 84% of cloudy pixels being correctly identified and 4% of clear-sky pixels being misidentified as cirrus. A semi-quantitative COD retrieval is developed for GOES ABI based on the observed relationship between CALIOP COD and 1.378 μm radiance. This study lays the groundwork for a more complex, operational GOES transparent cirrus detection algorithm. Future expansion includes an over-land algorithm, a more robust COD retrieval that is suitable for assimilation purposes, and downstream GOES products such as cirrus cloud microphysical property retrieval based on ABI infrared channels.

2019 ◽  
Author(s):  
Kalliopi Artemis Voudouri ◽  
Elina Giannakaki ◽  
Mika Komppula ◽  
Dimitris Balis

Abstract. Measurements of cirrus clouds geometrical and optical properties, performed with a multi-wavelength PollyXT Raman Lidar, during the period 2008 to 2016 are analysed. The measurements were performed with the same instrument, during sequential periods, in three places at different latitudes, Gual Pahari (28.43° N, 77.15° E, 243 m a.s.l) in India, Elandsfontein (26.25° S, 29.43° E, 1745 m a.s.l) in South Africa and Kuopio (62.74° N, 27.54° E, 190 m a.s.l) in Finland. The lidar dataset has been processed by an automatic cirrus cloud detection algorithm. In the following, we present a statistical analysis of the lidar derived geometrical characteristics (cloud boundaries, geometrical thickness) and optical properties of cirrus clouds (cloud optical depth, lidar ratio, ice crystal depolarization ratio) measured in different latitudes that correspond to subtropical and subarctic regions as well as their seasonal variability. The effect of multiple-scattering from ice particles to the derived optical products is also considered and corrected in this study. Our results show that, over the subtropical stations, cirrus layers, which have a noticeable monthly variability, were observed between 7 to 13 km, with mid-cloud temperatures ranging from −60 °C to −21 °C and a mean thickness of 1295 ± 489 m and 1383 ± 735 m for Gual Pahari and Elandsfontein respectively. The corresponding overall mean cirrus optical depth at 355 nm is calculated to be 0.59 ± 0.39 and 0.40 ± 0.33, with lidar ratio values at 355 nm of 26 ± 12 sr and 25 ± 6 sr, respectively. A more extended dataset was acquired for the subarctic area of Kuopio Finland, between 2012 and 2016. The estimated average geometrical thickness of the cirrus clouds over Kuopio is 1200 ± 585 m and the temperature values vary from −71 °C to −21 °C, while the mean cirrus optical depth at 355 nm is 0.25 ± 0.2, with an estimated mean lidar ratio of 33 ± 7 sr, similar to the idar ratio values observed over middle latitude stations. The kind of information presented here can be rather useful in the cirrus parameterizations required as input to radiative transfer models, and can be a complementary tool to satellite products that cannot provide cloud vertical structure. In addition, a ground-based statistics of the cirrus properties could be useful in the validation and improvement of the corresponding derived products from satellite retrievals.


Author(s):  
Manjunath K. E. ◽  
Yogeen S. Honnavar ◽  
Rakesh Pritmani ◽  
Sethuraman K.

The objective of this work is to develop methodologies to detect, and report the noncompliant images with respect to indian space research organisation (ISRO) recruitment requirements. The recruitment software hosted at U. R. rao satellite centre (URSC) is responsible for handling recruitment activities of ISRO. Large number of online applications are received for each post advertised. In many cases, it is observed that the candidates are uploading either wrong or non-compliant images of the required documents. By non-compliant images, we mean images which do not have faces or there is not enough clarity in the faces present in the images uploaded. In this work, we attempt to address two specific problems namely: 1) To recognise image uploaded to recruitment portal contains a human face or not. This is addressed using a face detection algorithm. 2) To check whether images uploaded by two or more applications are same or not. This is achieved by using machine learning (ML) algorithms to generate similarity score between two images, and then identify the duplicate images. Screening of valid applications becomes very challenging as the verification of such images using a manual process is very time consuming and requires large human efforts. Hence, we propose novel ML techniques to determine duplicate and non-face images in the applications received by the recruitment portal.


Identification of right medicinal plants that goes in to the formation of a medicine is significant in ayurvedic medicinal industry. This paper focuses around the automatic identification proof of therapeutic plants that are regularly utilized in Ayurveda. The fundamental highlights required to distinguish a medicinal plant is its leaf shape, color and texture. In this paper, we propose efficient accurate classifier for ayurvedic medical plant identification (EAC-AMP) utilizing using hybrid optimal machine learning techniques. In EAC-AMP, image corners detect first and top, bottom leaf edges are computed by the improved edge detection algorithm. After preprocessing, the segmentation can achieve using spider optimization neural network (SONN), which segments leaf regions from an image. The time and frequency domain features are computed by the symbolic accurate approximation (SAX); other features shape features, color features and tooth features are computed by the two-dimensional binary phase encoding (2DBPE). Finally, a whale optimization with deep neural network (DNN) classifier is used to characterize the type of plants. Accuracy in identification of any ayurvedic plant leaf is achieved by understanding and extracting the plant features. The main objective of the proposed EAC-AMP approach is to increase the accuracy of classifier. MATLAB experimental analysis showed better results such as accuracy, sensitivity and specificity.


2010 ◽  
Vol 49 (11) ◽  
pp. 2315-2333 ◽  
Author(s):  
Galina Wind ◽  
Steven Platnick ◽  
Michael D. King ◽  
Paul A. Hubanks ◽  
Michael J. Pavolonis ◽  
...  

Abstract Data Collection 5 processing for the Moderate Resolution Imaging Spectroradiometer (MODIS) on board the NASA Earth Observing System (EOS) Terra and Aqua spacecraft includes an algorithm for detecting multilayered clouds in daytime. The main objective of this algorithm is to detect multilayered cloud scenes, specifically optically thin ice cloud overlying a lower-level water cloud, that present difficulties for retrieving cloud effective radius using single-layer plane-parallel cloud models. The algorithm uses the MODIS 0.94-μm water vapor band along with CO2 bands to obtain two above-cloud precipitable water retrievals, the difference of which, in conjunction with additional tests, provides a map of where multilayered clouds might potentially exist. The presence of a multilayered cloud results in a large difference in retrievals of above-cloud properties between the CO2 and the 0.94-μm methods. In this paper the MODIS multilayered cloud algorithm is described, results of using the algorithm over example scenes are shown, and global statistics for multilayered clouds as observed by MODIS are discussed. A theoretical study of the algorithm behavior for simulated multilayered clouds is also given. Results are compared to two other comparable passive imager methods. A set of standard cloudy atmospheric profiles developed during the course of this investigation is also presented. The results lead to the conclusion that the MODIS multilayer cloud detection algorithm has some skill in identifying multilayered clouds with different thermodynamic phases.


2015 ◽  
Vol 8 (2) ◽  
pp. 553-566 ◽  
Author(s):  
M.-H. Ahn ◽  
D. Han ◽  
H. Y. Won ◽  
V. Morris

Abstract. For better utilization of the ground-based microwave radiometer, it is important to detect the cloud presence in the measured data. Here, we introduce a simple and fast cloud detection algorithm by using the optical characteristics of the clouds in the infrared atmospheric window region. The new algorithm utilizes the brightness temperature (Tb) measured by an infrared radiometer installed on top of a microwave radiometer. The two-step algorithm consists of a spectral test followed by a temporal test. The measured Tb is first compared with a predicted clear-sky Tb obtained by an empirical formula as a function of surface air temperature and water vapor pressure. For the temporal test, the temporal variability of the measured Tb during one minute compares with a dynamic threshold value, representing the variability of clear-sky conditions. It is designated as cloud-free data only when both the spectral and temporal tests confirm cloud-free data. Overall, most of the thick and uniform clouds are successfully detected by the spectral test, while the broken and fast-varying clouds are detected by the temporal test. The algorithm is validated by comparison with the collocated ceilometer data for six months, from January to June 2013. The overall proportion of correctness is about 88.3% and the probability of detection is 90.8%, which are comparable with or better than those of previous similar approaches. Two thirds of discrepancies occur when the new algorithm detects clouds while the ceilometer does not, resulting in different values of the probability of detection with different cloud-base altitude, 93.8, 90.3, and 82.8% for low, mid, and high clouds, respectively. Finally, due to the characteristics of the spectral range, the new algorithm is found to be insensitive to the presence of inversion layers.


2020 ◽  
Vol 12 (24) ◽  
pp. 4171
Author(s):  
Xinlu Xia ◽  
Xiaolei Zou

The Hyperspectral Infrared Atmospheric Sounder (HIRAS) onboard the Feng Yun-3D (FY-3D) satellite is the first Chinese hyperspectral infrared instrument. In this study, an improved cloud detection scheme using brightness temperature observations from paired HIRAS long-wave infrared (LWIR) and short-wave infrared (SWIR) channels at CO2 absorption bands (15-μm and 4.3-μm) is developed. The weighting function broadness and a set of height-dependent thresholds of cloud-sensitive-level differences are incorporated into pairing LWIR and SWIR channels. HIRAS brightness temperature observations made under clear-sky conditions during a training period are used to develop a set of linear regression equations between paired LWIR and SWIR channels. Moderate-resolution Imaging Spectroradiometer (MODIS) cloud mask data are used for selecting HIRAS clear-sky observations. Cloud Emission and Scattering Indices (CESIs) are defined as the differences in SWIR channels between HIRAS observations and regression simulations from LWIR observations. The cloud retrieval products of ice cloud optical depth and cloud-top pressure from the Atmospheric Infrared Sounder (AIRS) are used to illustrate the effectiveness of the proposed cloud detection scheme for FY-3D HIRAS observations. Results show that the distributions of modified CESIs at different altitudes can capture features in the distributions of AIRS-retrieved ice cloud optical depth and cloud-top pressure better than the CESIs obtained by the original method.


Author(s):  
B. Y. Yang ◽  
J. Liu ◽  
X. Jia

Abstract. Cirrus plays an important role in atmospheric radiation. It affects weather system and climate change. Satellite remote sensing is an important kind of observation for cloud. As a passive remote sensing instrument, large bias was found for thin cirrus cloud top height retrieval from MODIS (Moderate Resolution Imaging Spectroradiometer). Comparatively, CALIOP (Cloud-Aerosol Lidar with Orthogonal Polarization) aboard CALIPSO (Cloud–Aerosol Lidar and Infrared Pathfinder Satellite Observation) which is an active remote sensing instrument can acquire more accurate characteristics of thin cirrus cloud. In this study, CALIPSO cirrus cloud top height data was used to correct MODIS cirrus cloud top height. The data analysis area was selected in Beijing-Tianjin-Hebei region and data came from 2013 to 2017. Linear fitting method was selected based on cross-validation method between MODIS and CALIPSO data. The results shows that the difference between MODIS and CALIPSO changes from −3~2 km to −2.0~2.5 km, and the maximum difference changes from about −0.8 km to about 0.2 km. In the context of different vertical levels and cloud optical depth, MODIS cirrus cloud top height is improved after correcting, which is more obvious at lower cloud top height and optical thinner cirrus.


Author(s):  
Kartik Palani ◽  
Ramachandra Kota ◽  
Amar Prakash Azad ◽  
Vijay Arya

One of the major challenges confronting the widespread adoption of solar energy is the uncertainty of production. The energy generated by photo-voltaic systems is a function of the received solar irradiance which varies due to atmospheric and weather conditions. A key component required for forecasting irradiance accurately is the clear sky model which estimates the average irradiance at a location at a given time in the absence of clouds. Current methods for modelling clear sky irradiance are either inaccurate or require extensive atmospheric data, which tends to vary with location and is often unavailable. In this paper, we present a data-driven methodology, Blue Skies, for modelling clear sky irradiance solely based on historical irradiance measurements. Using machine learning techniques, Blue Skies is able to generate clear sky models that are more accurate spatio-temporally compared to the state of the art, reducing errors by almost 50%.


2019 ◽  
Vol 12 (1) ◽  
pp. 6 ◽  
Author(s):  
Liwen Wang ◽  
Youfei Zheng ◽  
Chao Liu ◽  
Zeyi Niu ◽  
Jingxin Xu ◽  
...  

The use of infrared (IR) sensors to detect clouds in different layers of the atmosphere is a big challenge, especially for ice clouds. This study aims to improve ice cloud detection using Lin’s algorithm and apply it to Atmospheric Infrared Sounder (AIRS). To achieve these objectives, the scattering and emission characteristics of clouds as perceived by AIRS longwave infrared (LWIR, ~15 μm) and shortwave infrared (SWIR, ~4.3 μm) CO2 absorption bands are applied for ice cloud detection. Hence, the weighting function peak (WFP), cut-off pressure, and correlation coefficients between the brightness temperatures (BTs) of LWIR and SWIR channels are used to pair the LWIR and SWIR channels. After that, the linear relationship between the clear-sky BTs of the paired LWIR and SWIR channels is established by the cloud scattering and emission Index (CESI). However, the linear relationship fails in the presence of ice clouds. Comparing these results with collocated Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) observations show that the probability of detection of ice clouds for Pair-8 (WFP~330hPa), Pair-19 (WFP~555hPa), and Pair-24 (WFP~866hPa) are 0.63, 0.71, and 0.73 in the daytime and 0.46, 0.62, and 0.7 in the nighttime at a false alarm rate of 0.1 when ice clouds top pressure above 330 hPa, 555 hPa, and 866 hPa, respectively. Furthermore, the thresholds of the three pairs are 2.4 K, 3 K, and 8.7 K in the daytime and 1.7 K, 1.7 K, and 4.4 K in the nighttime at the highest Heike Skill Score (HSS). The error of HSS values based on thresholds of ice clouds is between 0.01 and 0.02 which is comparable with the ice cloud detection results in both day and night conditions. It is shown that Pair-8 (WFP~330hPa) can detect opaque and thick ice clouds above its WFP altitude over the tropical areas but it is unable to observe ice clouds over the mid-latitude while Pair-19 and Pair-24 can identify ice clouds above their WFP altitude.


Sign in / Sign up

Export Citation Format

Share Document