Modeling Hydroplaning and Effects of Pavement Microtexture

Author(s):  
G. P. Ong ◽  
T. F. Fwa ◽  
J. Guo

Hydroplaning on wet pavement occurs when a vehicle reaches a critical speed and causes a loss of contact between its tires and the pavement surface. This paper presents the development of a three-dimensional finite volume model that simulates the hydroplaning phenomenon. The theoretical considerations of the flow simulation model are described. The simulation results are in good agreement with the experimental results in the literature and with those obtained by the well-known hydroplaning equation of the National Aeronautics and Space Administration (NASA). The tire pressure–hydroplaning speed relationship predicted by the model is found to match well the one obtained with the NASA hydroplaning equation. Analyses of the results of the present study indicate that pavement microtexture in the 0.2- to 0.5-mm range can delay hydroplaning (i.e., raise the speed at which hydroplaning occurs). The paper also shows that the NASA hydroplaning equation provides a conservative estimate of the hydroplaning speed. The analyses in the present study indicate that when the microtexture of the pavement is considered, the hydroplaning speed predicted by the proposed model deviates from the speed predicted by the smooth surface relationship represented by the NASA hydroplaning equation. The discrepancies in hydroplaning speed are about 1% for a 0.1-mm microtexture depth and 22% for a 0.5-mm microtexture depth. The validity of the proposed model was verified by a check of the computed friction coefficient against the experimental results reported in the literature for pavement surfaces with known microtexture depths.

2018 ◽  
Vol 140 (5) ◽  
Author(s):  
X. Bai ◽  
C. Hasan ◽  
M. Mobedi ◽  
A. Nakayama

A general expression has been obtained to estimate thermal conductivities of both stochastic and periodic structures with high-solid thermal conductivity. An air layer partially occupied by slanted circular rods of high-thermal conductivity was considered to derive the general expression. The thermal conductivity based on this general expression was compared against that obtained from detailed three-dimensional numerical calculations. A good agreement between two sets of results substantiates the validity of the general expression for evaluating the stagnant thermal conductivity of the periodic structures. Subsequently, this expression was averaged over a hemispherical solid angle to estimate the stagnant thermal conductivity for stochastic structures such as a metal foam. The resulting expression was found identical to the one obtained by Hsu et al., Krishnan et al., and Yang and Nakayama. Thus, the general expression can be used for both stochastic and periodic structures.


2005 ◽  
Vol 128 (2) ◽  
pp. 359-369 ◽  
Author(s):  
Rafael Ballesteros-Tajadura ◽  
Sandra Velarde-Suárez ◽  
Juan Pablo Hurtado-Cruz ◽  
Carlos Santolaria-Morros

In this work, a numerical model has been applied in order to obtain the wall pressure fluctuations at the volute of an industrial centrifugal fan. The numerical results have been compared to experimental results obtained in the same machine. A three-dimensional numerical simulation of the complete unsteady flow on the whole impeller-volute configuration has been carried out using the computational fluid dynamics code FLUENT®. This code has been employed to calculate the time-dependent pressure both in the impeller and in the volute. In this way, the pressure fluctuations in some locations over the volute wall have been obtained. The power spectra of these fluctuations have been obtained, showing an important peak at the blade passing frequency. The amplitude of this peak presents the highest values near the volute tongue, but the spatial pattern over the volute extension is different depending on the operating conditions. A good agreement has been found between the numerical and the experimental results.


1989 ◽  
Vol 111 (4) ◽  
pp. 443-449 ◽  
Author(s):  
A. Fafitis ◽  
Y. H. Won

An incremental three-dimensional stress-strain relationship for concrete with induced anisotropy has been developed. The nonlinearity and path-dependency are modeled by expressing the elastic moduli at each increment as function of the octahedral and deviatoric strains, based on a uniaxial stochastic model developed earlier. Predictions of multiaxial response under proportional and nonproportional loading are in good agreement with experimental results.


2011 ◽  
Vol 264-265 ◽  
pp. 1444-1449
Author(s):  
K.M. Adel ◽  
E.K. Ekhlas ◽  
S.H. Shaker

A three dimensional FE modeling of the laser surface modification is presented. The design capabilities of the ANSYS (11) software were employed for this purpose. The model calculates the dimensions of melting zone and heat affected zone. Model simulations are compared with experimental results that showed very good agreement. A one dimensional model in V.B language was presented too. The model based on conduction of heat in one dimension neglecting the other losses of heat. The results of VISUAL BASIC were compared with experimental results which showed a very good agreement. The two methods were compared with each other to showing which method have a good prediction compared with experimental results in calculating of fusion zone and heat affected zone "HAZ".


1993 ◽  
Vol 18 ◽  
pp. 135-141 ◽  
Author(s):  
Takahiko Uematsu

A three-dimensional, numerical simulation model for snow transport and drift formation is proposed in which saltation as well as suspension are considered as dynamic behavioral factors of moving snow particles. The procedure for simulation is as follows: (1) Air flow field is simulated solving the Reynolds equations and the continuity equation. (2) Using the result of the air field flow simulation, the blown-snow density field is simulated using the diffusion equations in which the fall velocity of blown snow particles is considered. In the boundary conditions, the particle movement of saltation is taken into consideration. (3) Finally, the snowdrift rate is computed based on the amount of snow particles not transported by saltation. This model was quantitatively tested for the phenomenon of snowdrift development. The computed results showed good agreement with observations.


2019 ◽  
pp. 1-25
Author(s):  
Khaled M. El-Sayed ◽  
Ahmed S. Debaiky ◽  
Nader N. Khalil ◽  
Ibrahim M. El-Shenawy

This paper presents the results of finite element (FE) analysis of axially loaded square hollow structural steel (HSS) columns, strengthened with polymer-mortar materials. Three-dimensional nonlinear FE model of HSS slender columns were developed using thin-shell element, considering geometric and material nonlinearity. The polymer-mortar strengthening layer was incorporated using additional layers of the shell element. The FE model has been performed and then verified against experimental results obtained by the authors [1]. Good agreement was observed between FE analysis and experimental results. The model was then used in an extended parametric study to examine selected AISC square HSS columns with different cross-sectional geometries, slenderness ratios, thicknesses of mortar strengthening layer, overall geometric imperfections, and level of residual stresses. The effectiveness of polymer-mortar in increasing the column’s axial strength is observed. The study also demonstrated that polymer-mortar strengthening materials is more effective for higher slenderness ratios. An equivalent steel thickness is also accounted for the mortar strengthened HSS columns to discuss the effectiveness of polymer-mortar strengthening system. The polymer-mortar strengthening system is more effective for HSS columns with higher levels of out-of-straightness. Level of residual stress has a slight effect on the gain in the column’s axial strength strengthened with polymer-mortar.


1937 ◽  
Vol 4 (2) ◽  
pp. A53-A54
Author(s):  
W. E. Howland

Abstract The author presents a figure in which the coefficient of discharge Cd, velocity Cv, and contraction Cc determined by several investigators are plotted logarithmically as points against Reynolds’ numbers. Curves for the coefficients drawn by the author, based on theoretical considerations, show good agreement with the experimental data, thus throwing some light upon the basic phenomena of the discharge of sharp-edged orifices. The variation of the coefficient of discharge of a circular orifice as a function of the Reynolds number is explained as a purely viscous phenomenon for low Reynolds numbers, and by means of a momentum analysis for higher speeds. The analysis presented by the author leads to the development of several formulas for the discharge coefficient, which formulas are in fair agreement with experimental results.


1981 ◽  
Vol 23 (2) ◽  
pp. 69-75 ◽  
Author(s):  
Y. L. Baif ◽  
W. Johnson

It has been observed experimentally that when a sphere ricochets off water or sand the critical impact angle depends on the impinging velocity. To explain this, a model is developed which takes into account the weight of the sphere and the static resistance of the medium into which penetration occurs. The proposed model can also treat processes in which the angle of impact is large and where the velocity of the sphere undergoes considerable change. Projectile trajectories which have been calculated for various conditions are presented and discussed. Numerical results for steel, aluminium alloy, and lead spheres are in good agreement with such experimental results as are available.


The turbulence problem is still unsolved, through a number of valuable papers have been published on it comparatively recently. But, since Hopf and von Mises proved that uniform shearing motion between two parallel planes was stable for infinitesimal disturbances but unstable for disturbances of a finite size has become more and more widely held. Von mises suggested that the reoughness of the walls might be the determining factor, but the experiments of Schiller have shown that the degree of roughness of the walls is of negligible influence on the critical value of Reynold's number. He concluded that the breakdown of laminar flow depended primarily on the size of the initial disturbance, in agreement eith Osborne Reynold's view. Important papers have been published by Noether and Tollmien, whose conclusions are in contradiction to one another. On the one hand, Noether, by a formal investigation of the asymptotic solutions of the equation governing the two-dimensional disturbances of flow between parallel walls, claims to have proved that all velocity profiles are stable for all values of Reynolds' number. On the other hand, Tollmien has determined a critical value of Reynolds' number for the flow past a flat plate placed edgeways to the stream. This value is in good agreement with the experimental results. There are, however, certain points in his analysis which are not clear and it would be useful to know if the method gave results in agreement with those derived more strictly.


1997 ◽  
Vol 119 (4) ◽  
pp. 733-741 ◽  
Author(s):  
W. G. Joo ◽  
T. P. Hynes

This paper discusses the application of an actuator disk model to the problem of calculating the asymmetric performance of a turbofan operating behind a nonaxisymmetric intake and due to the presence of the engine pylon. Good agreement between predictions and experimental results is demonstrated. Further validation of the model is obtained by comparison with the results of a three-dimensional calculation of an isolated fan operating with a nonaxisymmetric inlet. Some justification of the neglect of unsteady aspects of the flow in the fan is presented. The quantitative features of the interaction of the pylon and fan flow fields are discussed.


Sign in / Sign up

Export Citation Format

Share Document