Analysis of a mechanism with redundant drive for antenna pointing
Orientation accuracy is a key factor in the design of mechanisms for antenna pointing. Our design uses a redundantly actuated parallel mechanism which may provide an effective way to solve this problem, and even can increase its payload capability and reliability. The presented mechanism can be driven by rotary motors fixed on the base to reduce the inertia of the moving parts and to lower the power consumption. The mechanism is redundantly actuated by three arms, and is used as a two-dimensional antenna tracking and pointing device. Both the forward and inverse kinematics are investigated to find all the possible solutions. Detailed characters of the platform are analyzed to demonstrate the advantages in eliminating singularities and improving pointing accuracy. A method of calculating the overconstrained orientational error is also proposed based on the differential kinematics. All the methods are verified by numerical examples.