Performance prediction of transonic axial multistage compressor based on one-dimensional meanline method

Author(s):  
Yingying Zhang ◽  
Shijie Zhang

This study proposes a 1D meanline program for the modeling of modern transonic axial multistage compressors. In this method, an improved blockage factor model is proposed. Work-done factor that varies with the compressor performance conditions is added in this program, and at the same time a notional blockage factor is kept. The coefficient of deviation angle model is tuned according to experimental data. In addition, two surge methods that originated from different sources are chosen to add in and compare with the new method called mass flow separation method. The salient issues presented here deal first with the construction of the compressor program. Three well-documented National Aerodynamics and Space Administration (NASA) axial transonic compressors are calculated, and the speedlines and aerodynamic parameters are compared with the experimental data to verify the reliability and robustness of the proposed method. Results show that consistent agreement can be obtained with such a performance prediction program. It was also apparent that the two common methods of surge prediction, which rely upon either stage or overall characteristic gradients, gave less agreement than the method called mass flow separation method.

Author(s):  
Nicolás García Rosa ◽  
Adrien Thacker ◽  
Guillaume Dufour

In a fan stage under windmilling conditions, the stator operates under negative incidence, leading to flow separation, which may present an unsteady behaviour due to rotor/stator interactions. An experimental study of the unsteady flow through the fan stage of a bypass turbofan in windmilling is proposed, using hot-wire anemometry. Windmilling conditions are reproduced in a ground engine test bed by blowing a variable mass flow through a bypass turbofan in ambient conditions. Time-averaged profiles of flow coefficient are independent of the mass flow, demonstrating the similarity of velocity triangle. Turbulence intensity profiles reveal that the high levels of turbulence production due to local shear are also independent of the inlet flow. A spectral analysis confirms that the flow is dominated by the blade passing frequency, and that the separated regions downstream of the stator amplify the fluctuations locked to the BPF without adding any new frequency. Phase-locked averaging is used to capture the periodic wakes of the rotor blades at the rotor/stator interface. A spanwise behaviour typical of flows through windmilling fans is evidenced. Through the inner sections of the fan, rotor wakes are thin and weakly turbulent, and the turbulence level remains constant through the stage. The rotor wakes thicken and become more turbulent towards the fan tip, where flow separation occurs. Downstream of the stator, maximum levels of turbulence intensity are measured in the separated flow. Large periodical zones of low velocity and high turbulence intensity are observed in the outer parts of the separated stator wake, confirming the pulsating motion of the stator flow separation, locked at the blade passing frequency. Space-time diagrams show that the flow is chorochronic, and a 2 D non-linear harmonic simulation is able to capture the main interaction modes, however, the stator incidence distribution could be affected by 3 D effects.


Author(s):  
Harsh Vinayak ◽  
Donald R. Houser

Abstract This paper deals with the experimental study of dynamic transmission error of a gear pair. Two aspects of the experiment are discussed : 1) design of the test facility and data acquisition system and 2) comparison of transmission error and load distribution with experimental data. Several gears were tested under varying misalignments. A prediction program LDP (Load distribution Program) was used for theoretical calculations of dynamic transmission error.


2018 ◽  
Vol 90 (7) ◽  
pp. 1136-1144 ◽  
Author(s):  
Dimitris Gkiolas ◽  
Demetri Yiasemides ◽  
Demetri Mathioulakis

Purpose The complex flow behavior over an oscillating aerodynamic body, e.g. a helicopter rotor blade, a rotating wind turbine blade or the wing of a maneuvering airplane involves combinations of pitching and plunging motions. As the parameters of the problem (Re, St and phase difference between these two motions) vary, a quasi-steady analysis fails to provide realistic results for the aerodynamic response of the moving body, whereas this study aims to provide reliable experimental data. Design/methodology/approach In the present study, a pitching and plunging mechanism was designed and built in a subsonic closed-circuit wind tunnel as well as a rectangular aluminum wing of a 2:1 aspect-ratio with a NACA64-418 airfoil, used in wind turbine blades. To measure the pressure distribution along the wing chord, a number of fast responding transducers were embedded into the mid span wing surface. Simultaneous pressure measurements were conducted along the wing chord for the Reynolds number of 0.85 × 106 for both steady and unsteady cases (pitching and plunging). A flow visualization technique was used to detect the flow separation line under steady conditions. Findings Elevated pressure fluctuations coincide with the flow separation line having been detected through surface flow visualization and flattened pressure distributions appear downstream of the flow separation line. Closed hysteresis loops of the lift coefficient versus angle of attack were measured for combined pitching and plunging motions. Practical implications The experimental data can be used for improvement of unsteady fluid mechanics problem solvers. Originality/value In the present study, a new installation was built allowing the aerodynamic study of oscillating wings performing pitching and plunging motions with prescribed frequencies and phase lags between the two motions. The experimental data can be used for improvement of computational fluid dynamics codes in case that the examined aerodynamic body is oscillating.


Author(s):  
P. Pilidis ◽  
N. R. L. Maccallum

The paper describes a general program which has been developed for the prediction of the transient performance of gas turbines. The program is based on the method of continuity of mass flow. It has been applied successfully to a wide range of aero gas turbines, ranging from single to three-spool and from simple jet to bypass types with or without mixed exhausts. The results for three of these engine types are illustrated. Computing times are reasonable, increasing with the complexity of the engine. A parallel paper describes the inclusion of thermal effects in the prediction program.


2017 ◽  
Vol 140 (1) ◽  
Author(s):  
Eduard Amromin

Cavitation within regions of flow separation appears in drifting vortices. A two-part computational method is employed for prediction of cavitation inception number there. The first part is an analysis of the average flow in separation regions without consideration of an impact of vortices. The second part is an analysis of equilibrium of the bubble within the core of a vortex located in the turbulent flow of known average characteristics. Computed cavitation inception numbers for axisymmetric flows are in the good agreement with the known experimental data.


2005 ◽  
Vol 3 (1) ◽  
pp. 45-50 ◽  
Author(s):  
M. McGarry ◽  
L. Grega

The mass flow distribution and local flow structures that lead to areas of reactant starvation are explored for a small power large active area PEM fuel cell. A numerical model was created to examine the flow distribution for three different inlet profiles; blunt, partially developed, and fully developed. The different inlet profiles represent the various distances between the blower and the inlet to the fuel cell and the state of flow development. The partially and fully developed inlet profiles were found to have the largest percentage of cells that are deficient, 20% at a flow rate of 6.05 g/s. Three different inlet mass flow rates (stoichs) were also examined for each inlet profile. The largest percent of cells deficient in reactants is 27% and occurs at the highest flow rate of 9.1 g/s (3 stoichs) for the partially and fully developed turbulent profiles. In addition to the uneven flow distribution, flow separation occurs in the front four channels for the blunt inlet profile at all flow rates examined. These areas of flow separation lead to localized reactant deficient areas within a channel.


2001 ◽  
Author(s):  
Hooman Rezaei ◽  
Abraham Engeda ◽  
Paul Haley

Abstract The objective of this work was to perform numerical analysis of the flow inside a modified single stage CVHF 1280 Trane centrifugal compressor’s vaneless diffuser and volute. Gambit was utilized to read the casing geometry and generating the vaneless diffuser. An unstructured mesh was generated for the path from vaneless diffuser inlet to conic diffuser outlet. At the same time a meanline analysis was performed corresponding to speeds and mass flow rates of the experimental data in order to obtain the absolute velocity and flow angle leaving the impeller for those operating conditions. These values and experimental data were used as inlet and outlet boundary conditions for the simulations. Simulations were performed in Fluent 5.0 for three speeds of 2000, 3000 and 3497 RPM and mass flow rates of minimum, medium and maximum. Results are in good agreement with the experimental ones and present the flow structures inside the vaneless diffuser and volute.


2019 ◽  
Vol 161 (A2) ◽  

In this paper, an attempt has been made to predict the performance of a planing catamaran using a mathematical model. Catamarans subjected to a common hydrodynamic lift, have an extra lift between the two asymmetric half bodies. In order to develop a mathematical model for performance prediction of planing catamarans, existing formulas for hydrodynamic lift calculation must be modified. Existing empirical and semi-empirical equations in the literature have been implemented and compared against available experimental data. Evaluation of lift in comparison with experimental data has been documented. Parameters influencing the interaction between demi-hulls and separation effects have been analyzed. The mathematical model for planing catamarans has been developed based on Savitsky’s method and results have been compared against experimental data. Finally, the effects of variation in hull geometry such as deadrise angle and distance between two half bodies on equilibrium trim angle, resistance and wetted surface have been examined.


1991 ◽  
Vol 15 ◽  
pp. 247-253
Author(s):  
Devinder S. Sodhi

The data from a small-scale experimental study on ice-structure interaction are used to compute the energy exchanges that take place during creep deformation and intermittent and continuous crushing of ice. The energy supplied by the carriage is partly stored in the structural spring, partly converted to kinetic energy, partly dissipated in deforming and extruding the ice and partly dissipated as heat in the damping mechanisms of the structure. Except for the heat dissipation, all other forms of energy were computed from the experimental data, and the heat dissipation was computed from the energy balance using the first law of thermodynamics. Plots of all forms of energy are shown in graphical form, in which their relative magnitudes, times of occurrence and interplay can be seen. The main result of this study is the thesis that intermittent crushing or ice-induced vibration takes place whenever there is an imbalance between the rates of work done by the carriage and the indentor and that there are no vibrations when these rates of work are equal.


2015 ◽  
Vol 23 (02) ◽  
pp. 1550011 ◽  
Author(s):  
R. O. Nunes ◽  
R. N. Faria ◽  
N. Bouzidi ◽  
L. Machado ◽  
R. N. N. Koury

This paper presents a mathematical model for a capillary tube using CO 2 as fluid in steady flow transcritical cycle. The capillary tube is divided into N volumes controls and the model is based on applying the equations of conservation of energy, mass and momentum in the fluid in each of these volumes controls. The model calculates the mass flow of the CO 2 in the capillary tube as a function of CO 2 pressures at the inlet and outlet of the capillary and the temperature of CO 2 at the input of this device. The capillary tube is considered to be adiabatic, and the limit of operation due to blocked flow condition is also considered in the model. The validation of the model was performed with experimental data and the results showed that the model is capable of predicting the mass flow in the capillary tube with errors less than 10%. The model was also used to determine the minimum diameter of the capillary tube for various conditions of CO 2 transcritical cycle.


Sign in / Sign up

Export Citation Format

Share Document