Characterization of viscoelastic properties of minced beef meat thawed by ohmic and conventional methods

2019 ◽  
Vol 26 (4) ◽  
pp. 277-290 ◽  
Author(s):  
Mutlu Cevik ◽  
Filiz Icier

Frozen minced meat samples having fat contents of 2%, 10% and 18% were thawed using different methods (refrigeration thawing at ambient temperature of +4 ℃, under running cold water (+4 ℃) thawing, ohmic thawing for 10, 13 and 16 V/cm). Viscoelastic properties were determined by using rheological tests (oscillation and creep/recovery tests). Storage modulus, loss modulus, complex modulus, loss tangent, dynamic viscosity and complex viscosity values of minced meat samples increased as fat content increased. As frequency value increased, the modulus values of meat samples increased but dynamic and complex viscosity values of the samples decreased. The minced meat samples thawed by different methods had recoverable compliance values. The compliance values of meat samples during creep region can be well characterized by Burgers model. Ohmic thawing can be used as an alternative thawing method since it resulted in similar rheological properties of minced meat samples compared to refrigeration thawing at ambient temperature of +4 ℃ and under running cold water (+4℃) thawing.

2005 ◽  
Vol 475-479 ◽  
pp. 2387-2390 ◽  
Author(s):  
X.M. Li ◽  
Qing Ling Feng

In this study, a novel bioabsorbable porous bone scaffold reinforced by chitin fibres was prepared, the porosity of which is about 90 % and the pore size is approximately 200µm. The Advanced Rheological Enlarged System (ARES) was used to study the dynamic rheological behaviors of the ropy materials which would be made into the reinforced scaffold. The increase of the fibres’ volume content (Cf) enhanced the complex modulus (G*) and complex viscosity (h*) of the materials, the reason of which is that the fibres formed networks in the materials. When Cf increased from 35 % to 45 %, the storage modulus (G’) and loss modulus (G’’) curve showed obvious yielding behavior, which indicates that G’ and G’’ of the materials are hardly variable in a wide range. When Cf was more than 35 %, the loss factor (tand) was obviously lower than 1 and the materials exhibited viscoelastic properties, which result in a disadvantage for materials’ processing.


2019 ◽  
Vol 285 ◽  
pp. 380-384
Author(s):  
Gerardo Sanjuan-Sanjuan ◽  
Ángel Enrique Chavez-Castellanos

The subject of this work is to investigate viscoelastic properties such as loss modulus (G ́ ́), storage modulus (G ́), complex shear modulus (G*), complex viscosity (η*) and loss angle () at different temperatures by means of a small-amplitude oscillatory test. These properties allow to provide information about materials structure. For this purpose, we employed a tin-lead alloy (Sn-15%Pb) which exhibits a similar microstructure to aluminum alloys and is the classic alloy for semisolid thixotropic studies. It is interesting to note that the Sn-15%Pb alloy exhibits a slightly decrease in storage modulus (G ́) over the entire frequency (0.01-10Hz) at high temperatures, showing its viscoelastic behavior. In addition, a detailed analysis of master curves (oscillatory tests) was made to relate the semisolid microstructure (solid fraction) with the plateau modulus (GN0) which is directly related with both molecular weight or percolation threshold in polymer and gels science respectively.


Holzforschung ◽  
2015 ◽  
Vol 69 (3) ◽  
pp. 265-271 ◽  
Author(s):  
Qianqian Tang ◽  
Mingsong Zhou ◽  
Dongjie Yang ◽  
Xueqing Qiu

Abstract Concentrated sodium lignosulfonate (NaLS) solutions have wide industrial applications. Therefore, the viscoelastic properties of NaLS in concentrations of 55%–63% have been investigated between 5°C and 55°C by means of a dynamic rheological technique, namely, the oscillatory rheological experiments were conducted in a rheometer in the small amplitude oscillatory mode. All solutions showed “shear-thinning” behavior over frequency. The complex viscosity (η*) increased and the loss tangent (tanδ) decreased with increasing concentrations. Both the storage modulus (G′) and the loss modulus (G″) increased with increasing frequencies and concentrations. The change in viscoelastic behavior was probably caused by stronger aggregation effects. However, the effects of temperature on the viscoelastic properties are more complex. For 60% NaLS, G′, G″, and η* decreased, but tanδ increased with increasing temperatures. When the temperature exceeded 20°C, G′, G″, and η* increased, but tanδ decreased, and the relaxation times were increased as a function of temperature. The change in viscoelasticity as a function of temperature may also be related to intermolecular aggregation and the swelling of aggregates. The conductivity experiments indicated that the formation of a greater strength of network structures at higher levels of concentrations between 55% and 63% and temperatures between 20°C and 55°C was probably responsible for elasticity enhancement.


2013 ◽  
Vol 325-326 ◽  
pp. 97-101
Author(s):  
Phu Cuong Cao ◽  
Zhong Yin Guo ◽  
Yong Shun Yang ◽  
Zhi Chao Xue

The study of effects of high temperature on asphalt binder based on viscoelasticity theory will help clarify the influence mechanism of temperature on asphalt binder. Based on the theory of viscoelasticity, the Dynamic Shear Rheology test is used as study method. The objective of this study is to analyze and determine the features of asphalt binder under the effect of high temperature. Meanwhile, study subjects are AH70 asphalt, SBS modified asphalt and MAC modified asphalt. The result indicates that temperature increases have great influence on asphalt binder, which are shown by the variation of parameters quickly decrease. The relationship between temperature and such parameters as complex modulus, storage modulus, loss modulus, complex viscosity, storage viscosity, loss viscosity, rutting resistance parameter and fatigue resistance parameter can be described as regression of power function.


2013 ◽  
Vol 651 ◽  
pp. 419-423
Author(s):  
Xiao Li Zhan

The objective of this study is to predict the asphalt mixture dynamic modulus using the viscoelastic properties of asphalt mortar. The dynamic viscoelastic characteristics of asphalt mortar and asphalt mixture are tested at different temperatures and loading frequencies using dynamic shear rheometer, such as storage modulus, loss modulus and phase angle. The complex modulus of asphalt mortar, volume parameters and Hirsch model were used to predict complex modulus of asphalt mixture. The experimental measurements of dynamic modulus were employed to compare with the predictions. The result showed this method can predict complex modulus of asphalt mixture very well.


2011 ◽  
Vol 197-198 ◽  
pp. 1263-1266
Author(s):  
Jing Guo ◽  
Cheng Nv Hu ◽  
Wen Fei Huang

Hexanedioic acid, PEG6000 and zinc oxide (ZnO) was chosen as raw materials,and tetrabutyl titanate as catalyst to synthesize the poly(ether ester) containing zinc (PEEM). PEEM and Diphenyl-methane-diisocyanate (MDI) as chain extender was added into polycaprolactam whose molecular weight is about 4000 for synthesizing poly (ether ester amide) containing zinc (PEEAM). The rheological behavior of PEEAM was investigated by an advanced rheometric expansion system (ARES). Dynamic rheometer was used to measure the structures and properties of PEEAM. The dynamic rheological test indicated that the complex modulus (G*), the dynamic storage modulus (G”) and loss modulus (G’) of the PEEAM increase with the frequency (ω) increasing; the complex viscosity (η*) decreases linearly with the ω increasing, and decreases slightly with the temperature increasing, which indicates obvious flow behavior of pseudoplastic fluid. The Cole-Cole curves are convex, in the low frequency zone, the real number viscosity at 260°C is smaller than the real number viscosity at 230°C. The loss tangent (tan δ) presents a miximum with the increase of ω.


2020 ◽  
Vol 16 (4) ◽  
pp. 462-469
Author(s):  
Zhaleh Sheidaei ◽  
Bahareh Sarmadi ◽  
Seyede M. Hosseini ◽  
Fardin Javanmardi ◽  
Kianoush Khosravi-Darani ◽  
...  

<P>Background: The high amounts of fat, sugar and calorie existing in dairy desserts can lead to increase the risk of health problems. Therefore, the development of functional and dietary forms of these products can help the consumer health. </P><P> Objective: This study aims to investigate the effects of &#954;-carrageenan, modified starch and inulin addition on rheological and sensory properties of non-fat and non-added sugar dairy dessert. </P><P> Methods: In order to determine the viscoelastic behavior of samples, oscillatory test was carried out and the values of storage modulus (G′), loss modulus (G″), loss angle tangent (tan &#948;) and complex viscosity (&#951;*) were measured. TPA test was used for analysis of the desserts’ texture and textural parameters of samples containing different concentrations of carrageenan, starch and inulin were calculated. </P><P> Results: All treatments showed a viscoelastic gel structure with the storage modulus higher than the loss modulus values. Increasing amounts of &#954;-carrageenan and modified starch caused an increase in G′ and G″ as well as &#951;* and a decrease in tan &#948;. Also, firmness and cohesiveness were enhanced. The trained panelists gave the highest score to the treatment with 0.1% &#954;-carrageenan, 2.5% starch and 5.5% inulin (sucralose as constant = 0.25%) and this sample was the best treatment with desirable attributes for the production of non-fat and non-added sugar dairy dessert. </P><P> Conclusion: It can be concluded that the concentration of &#954;-carrageenan and starch strongly influenced the rheological and textural properties of dairy desserts, whereas the inulin content had little effect on these attributes.</P>


2021 ◽  
pp. 096739112110012
Author(s):  
Qingsen Gao ◽  
Jingguang Liu ◽  
Xianhu Liu

The effect of annealing on the electrical and rheological properties of polymer (poly (methyl methacrylate) (PMMA) and polystyrene (PS)) composites filled with carbon black (CB) was investigated. For a composite with CB content near the electrical percolation threshold, the formation of conductive pathways during annealing has a significant impact on electrical conductivity, complex viscosity, storage modulus and loss modulus. For the annealed samples, a reduction in the electrical and rheological percolation threshold was observed. Moreover, a simple model is proposed to explain these behaviors. This finding emphasizes the differences in network formation with respect to electrical or rheological properties as both properties belong to different physical origins.


Proceedings ◽  
2020 ◽  
Vol 69 (1) ◽  
pp. 38
Author(s):  
Celia Idres ◽  
Mustapha Kaci ◽  
Nadjet Dehouche ◽  
Idris Zembouai ◽  
Stéphane Bruzaud

This paper aims to investigate the effect of different chemical modifications of biocomposites based on poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) (PHBH) and aloe vera bio-fibers incorporated at 20 wt%. The fiber surface was modified with alkaline, organosilanes, and combined alkaline/organosilanes. Surface morphology, thermal stability, water absorption capacity, and rheological behavior of the modified biocomposite materials were studied, and the results compared to both unmodified biocomposites and neat PHBH. The study showed that the modified biocomposites with both alkaline and organosilanes exhibited an improved surface morphology, resulting in a good fiber/matrix interfacial adhesion. As a result, increases in complex viscosity, storage modulus, and loss modulus were observed, whereas water absorption was reduced. Thermal stability remained almost unchanged, with the exception of the biocomposite treated with alkaline, where this property decreased significantly. Finally, the coupling of alkaline and organosilane modification is an efficient route to enhance the properties of PHBH biocomposites.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Abdelazeem M. Algammal ◽  
Mahmoud E. Elsayed ◽  
Hany R. Hashem ◽  
Hazem Ramadan ◽  
Norhan S. Sheraba ◽  
...  

Abstract Background Meat-products are considered an enriched media for mycotoxins. This study aimed to investigate the prevalence of toxigenic Aspergillus species in processed meat samples, HPLC-quantitative measurement of aflatoxin B1 and ochratoxin A residues, and molecular sequencing of aflR1 and pks genes. One hundred and twenty processed beef meat specimens (basterma, sausage, and minced meat; n = 40 for each) were collected from Ismailia Province, Egypt. Samples were prepared for total mold count, isolation, and identification of Aspergillus species. All samples were analyzed for the production of both Aflatoxin B1 and Ochratoxin A mycotoxins by HPLC. Molecular identification of Aspergillus flavus and Aspergillus ochraceus was performed using PCR amplification of the internal transcribed spacer (ITS) region; furthermore, the aflR1 and pks genes were sequenced. Results The total mold count obtained from sausage samples was the highest one, followed by minced meat samples. The prevalence of A. flavus was (15%), (7.5%), and (10%), while the prevalence of A. ochraceus was (2.5%), (10%), and (0%) in the examined basterma, sausage, and minced meat samples, respectively. Using PCR, the ITS region was successfully amplified in all the tested A. flavus and A. ochraceus strains. Aflatoxin B1 was detected in six basterma samples (15%). Moreover, the ochratoxin A was detected only in four sausage samples (10%). The aflR1 and pks genes were amplified and sequenced successfully and deposited in the GenBank with accession numbers MF694264 and MF694264, respectively. Conclusions To the best of our knowledge, this is the first report concerning the HPLC-Molecular-based approaches for the detection of aflatoxin B1 and ochratoxin A in processed beef meat in Egypt. The production of aflatoxin B1 and ochratoxin A in processed meat constitutes a public health threat. Aflatoxin B1 is commonly associated with basterma samples. Moreover, ochratoxin A was detected frequently in sausage samples. The routine inspection of mycotoxins in processed meat products is essential to protect human consumers.


Sign in / Sign up

Export Citation Format

Share Document