Mechanical characterization and creep strengthening of AZ91 magnesium alloy by addition of yttrium oxide nanoparticles

Author(s):  
Faraz Kiarasi ◽  
Masoud Babaei ◽  
Mostafa Omidi Bidgoli ◽  
Kazem Reza Kashyzadeh ◽  
Kamran Asemi

In the current research, the authors have attempted to improve the mechanical properties and creep behavior of the magnesium alloy Mg–9Al–1Zn (AZ91) in three different stress levels. To this end, the present study investigated experimentally the addition effects of different values of yttrium oxide nanoparticles to the AZ91. In this regard, weight percentages of 0.5%, 1%, 1.5%, and 2% nanoparticles were added to the material using the vortex casting method. Then, various test specimens were fabricated based on the ASTM standards by utilizing a Computer Numerical Control lathe machine. Different experiments were performed, and the results of different groups were compared with each other. The results revealed that the addition of yttrium oxide (Y2O3) nanoparticles increases the strength of AZ91 magnesium alloy until the nanoparticles do not clump in the microstructure. In other words, the tensile strength of the nanocomposite increased by adding nanoparticles up to 1.5%, but by adding 2% of nanoparticles, we found that the tensile strength is lower than that of pure magnesium. Moreover, one of the most important achievements of this study is that if the nanoparticles do not clump in the material microstructure, the addition of Y2O3 increases the rate of stable creep (the secondary creep stage). Also, the experimental results indicated that the highest stable creep rate is related to the nanocomposite with 1.5% yttrium oxide nanoparticles. Furthermore, the maximum hardness of the material was obtained in the same case.

2014 ◽  
Vol 933 ◽  
pp. 66-70
Author(s):  
Jun Jie Yang ◽  
Yao Li ◽  
Ping Xue

Rare Earth (RE) were added to industrial AZ91 magnesium alloy, so that RE-AZ91 Mg alloy was produced by the process of die casting, so as to study the effect of RE on corrosion resistance and tensile strength of Mg alloy. The experiment results show that RE addition could improve the tensile strength and corrosion resistance of magnesium alloy at a certain amount of RE. RE-AZ91 had a good heat resistance, corrosion resistance at a high temperature or in the environment applied constant voltage, with a high tensile strength.


2011 ◽  
Vol 328-330 ◽  
pp. 1650-1653 ◽  
Author(s):  
Jin Ling Zhang ◽  
She Bin Wang ◽  
Xiao Ye Qi ◽  
Bing She Xu

Microstructure changes brought by the addition of La element to AZ91 magnesium alloy are studied, also, the precipitating phases were identified and their influence on the mechanical properties of alloys was investigated. Results show La makes refinement of microstructure of the AZ91 alloy, and decrease the size of Mg17Al12 phase. La element takes a priority to react with Al element over Mg, forming binary phase Al11La3 with high melting point. Certain amount of La increases tensile strength, yield strength and elongation. With more addition, La would combine more Al in matrix and decrease strengthening effect, because Al11La3 phase would become coarsening. The mechanical poroerties tests indicate that AZ91+0.16%La alloy has the best properties. Maximum tensile strength, maximum yield strength and elongation are 245MPa, 178MPa and 14.5% respective, increased by 21%, 19% and 48% respectively. The mechanism of La strenthing mechanical properties is proposed that Al11La3 phase enriched on solid-liquid interface, increased the degree of supercooling, refined the grain size and changed the crystal style.


2011 ◽  
Vol 704-705 ◽  
pp. 892-896
Author(s):  
Bao Hong Zhang ◽  
Zhi Min Zhang

In order to study the effect of plastic deformation on microstructure and mechanical properties of as-cast AZ91 magnesium alloy, experiments of hot direct extrusion were performed at different extrusion temperatures and different extrusion ratios. The microstructure and mechanical properties of extruded billets and extrudate were measured. Experimental results show that the grain size of as-cast AZ91 magnesium alloy can be dramatically refined by extrusion. Hot extrusion can obviously improve the mechanical properties of as-cast AZ91 magnesium Alloy, comparing with the pre-extruded billet, the tensile strength, yield strength and elongation of extrudate can be improved by at least 69%, 117% and 150% respectively. As the extrusion temperature increases, the tensile strength and yield strength of extrudate will increase. As the extrusion ratio increases, the tensile strength and yield strength of extrudate will increase at first and then fall. At the time of extrusion temperature of 420°C and extrusion ratio of 45, the highest tensile strength of 381Mpa and yield strength of 303MPa can be achieved for the extrudate.


2012 ◽  
Vol 562-564 ◽  
pp. 242-245 ◽  
Author(s):  
Ming Tan ◽  
Zhao Ming Liu ◽  
Gao Feng Quan

The effects of heat treatment on the microstructure, tensile property and fracture behavior of as-extruded AZ91 magnesium alloy were studied by OM and SEM. The results show that the grain of as-cast AZ91 alloy is refined by extruding and dynamic recrystallization, and the mechanical properties increase obviously. The ductility is significantly enhanced after solution treatment of the as-extruded AZ91 alloy, tensile strength is almost the same before and hardness is significantly reduced after solution treatment and artificial aging treatment. The tensile strength reduced and the ductility is significantly enhanced of as-extruded AZ91 magnesium alloy after annealing processes. The fracture surface of as-extruded AZ91 magnesium alloy has the mixture of ductile and brittle characteristic. But after T6 or annealing treatment, its dimple number increases evidently.


2019 ◽  
Vol 61 (3) ◽  
pp. 260-266 ◽  
Author(s):  
Ugur Koklu ◽  
Sezer Morkavuk ◽  
Levent Urtekin

1996 ◽  
Vol 35 (4) ◽  
pp. 529-534 ◽  
Author(s):  
Kun Wu ◽  
Mingyi Zheng ◽  
Min Zhao ◽  
Congkai Yao ◽  
Jihong Li

Materials ◽  
2021 ◽  
Vol 14 (14) ◽  
pp. 4010
Author(s):  
Grzegorz Banaszek ◽  
Teresa Bajor ◽  
Anna Kawałek ◽  
Tomasz Garstka

This paper presents the results of numerical tests of the process of forging magnesium alloy ingots (AZ91) on a hydraulic press with the use of flat and proprietary shaped anvils. The analysis of the hydrostatic pressure distribution and the deformation intensity was carried out. It is one of the elements used for determining the assumptions for the technology of forging to obtain a semi-finished product from the AZ91 alloy with good strength properties. The aim of the research was to reduce the number of forging passes, which will shorten the operation time and reduce the product manufacturing costs. Numerical tests of the AZ91 magnesium alloy were carried out using commercial Forge®NxT software.


Sign in / Sign up

Export Citation Format

Share Document