A mechanical model to interpret distributed fiber optic strain measurement at displacement discontinuities

2020 ◽  
pp. 147592172096418
Author(s):  
Shenghan Zhang ◽  
Han Liu ◽  
Jeffrey Cheng ◽  
Matthew J DeJong

Distributed fiber optic (strain) sensing, which provides the unique advantage of sensing damage (e.g. cracking) at locations that are not known a priori, has been increasingly used in civil engineering. Quantitative crack measurement requires the translation of a discontinuous displacement field at the crack to a continuous strain deformation in the fiber. The main purpose of this article is to develop a mechanical model to explain the fiber deformation in the presence of a displacement discontinuity. The proposed mechanical model is validated with experimental results from cable calibration tests and concrete cracking tests. The model is extended to simulate the effects of multiple closely spaced cracks on fiber optic strain measurement, and this model is used to create an algorithm to automatically distinguish multiple cracks in distributed fiber optic (strain) sensing strain distributions. Using the model and two shape parameters, kurtosis and standard variation, the effects of cable properties (i.e. shear stiffness between cable and fiber, cable radius, elastic modulus, and interface cohesion) on the shape of fiber optic strain distributions across cracks are also quantified. The results provide an indication of beneficial cable properties for various measurement objectives.

Sensors ◽  
2019 ◽  
Vol 19 (16) ◽  
pp. 3518 ◽  
Author(s):  
Asmus Skar ◽  
Assaf Klar ◽  
Eyal Levenberg

The evaluation of soil reaction in geotechnical foundation systems such as concrete pavements, mat- and raft foundations is a challenging task, as the process involves both the selection of a representative mechanical model (e.g., Winkler, Continuum, Pasternak, etc.) and identify its prevailing parameters. Moreover, the support characteristics may change with time and environmental situation. This paper presents a new method for the characterization of plate foundation support using high-resolution fiber-optic distributed strain sensing. The approach involves tracking the location of distinct points of zero and maximum strains, and relating the shift in their location to the changes in soil reaction. The approach may allow the determination of the most suited mechanical model of soil representation as well as model parameters. Routine monitoring using this approach may help to asses the degradation of the subsoil with time as part of structural health monitoring strategies. In this paper, fundamental expressions that relate between the location of distinct strain points and the variation of soil parameters were developed based on various analytical foundation support models. Finally, as an initial validation step and to underpin the idea basics, the proposed method was successfully demonstrated on a simple mechanical setup. It is shown that the approach allows for load-independent characterization of the soil response and, in that sense, it is superior to common identification methods.


Author(s):  
Barry G. Grossman ◽  
Li-Tien Huang ◽  
Paul J. Cosentino ◽  
Wulf von Eckroth

Three-dimensional strain sensing inside a structure is not feasible with conventional strain sensing techniques such as electrical strain gauges, which are limited to surface measurements. Three-dimensional strain measurement inside a structure would find uses in a variety of new applications: enhanced understanding and detection of composite failure modes, such as delamination; sensing for adaptive structural control; intelligent vehicle highway systems; and structural health monitoring systems for civil structures. The latter application could involve remotely monitoring structural integrity during and after an earthquake, for example. A fiber-optic strain sensor array (FOSSA) in a planar, patch-like configuration was developed, and accurate measurement of the three principal strains inside a simple structure was demonstrated. The planar configuration was chosen to avoid the difficulty and structural degradation of embedding optical sensors in three planes. Two extrinsic Fabry-Perot interferometric (EFPI) sensors and one polari-metric sensor form the planar sensor array. The two EFPI sensors were placed perpendicular to each other in the sensor plane to extract the two normal strain components along the x and y axes. The polarimetric sensor embedded in the plane was used to extract the third normal strain acting on the z axis. The sensor array was embedded in an epoxy resin cube and loaded to 454 kg (1,000 1b) with a loading machine. The strains that were measured correlated well with the external strains measured with surface-bonded electrical strain gauges. The variation in measured strain between the two sensor systems was less than 4 percent for all three principal axes.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Cheng-Cheng Zhang ◽  
Bin Shi ◽  
Song Zhang ◽  
Kai Gu ◽  
Su-Ping Liu ◽  
...  

AbstractVertical deformation profiles of subterranean geological formations are conventionally measured by borehole extensometry. Distributed strain sensing (DSS) paired with fiber-optic cables installed in the ground opens up possibilities for acquiring high-resolution static and quasistatic strain profiles of deforming strata, but it is currently limited by reduced data quality due to complicated patterns of interaction between the buried cables and their surroundings, especially in upper soil layers under low confining pressures. Extending recent DSS studies, we present an improved approach using microanchored fiber-optic cables—designed to optimize ground-to-cable coupling at the near surface—for strain determination along entire lengths of vertical boreholes. We proposed a novel criterion for soil–cable coupling evaluation based on the geotechnical bearing capacity theory. We applied this enhanced methodology to monitor groundwater-related vertical motions in both laboratory and field experiments. Corroborating extensometer recordings, acquired simultaneously, validated fiber optically determined displacements, suggesting microanchored DSS as an improved means for detecting and monitoring shallow subsurface strain profiles.


2021 ◽  
Author(s):  
Chet Hopp ◽  
Yves Guglielmi ◽  
Antonio Pio Rinaldi ◽  
Florian Soom ◽  
Quinn Wenning ◽  
...  

2012 ◽  
Vol 51 (8) ◽  
pp. 1033 ◽  
Author(s):  
De-Wen Duan ◽  
Yun-jiang Rao ◽  
Yu-Song Hou ◽  
Tao Zhu

Sign in / Sign up

Export Citation Format

Share Document