cable properties
Recently Published Documents


TOTAL DOCUMENTS

112
(FIVE YEARS 10)

H-INDEX

29
(FIVE YEARS 2)

eLife ◽  
2021 ◽  
Vol 10 ◽  
Author(s):  
Celia Biane ◽  
Florian Rückerl ◽  
Therese Abrahamsson ◽  
Cécile Saint-Cloment ◽  
Jean Mariani ◽  
...  

Synaptic transmission, connectivity, and dendritic morphology mature in parallel during brain development and are often disrupted in neurodevelopmental disorders. Yet how these changes influence the neuronal computations necessary for normal brain function are not well understood. To identify cellular mechanisms underlying the maturation of synaptic integration in interneurons, we combined patch-clamp recordings of excitatory inputs in mouse cerebellar stellate cells (SCs), three-dimensional reconstruction of SC morphology with excitatory synapse location, and biophysical modeling. We found that postnatal maturation of postsynaptic strength was homogeneously reduced along the somatodendritic axis, but dendritic integration was always sublinear. However, dendritic branching increased without changes in synapse density, leading to a substantial gain in distal inputs. Thus, changes in synapse distribution, rather than dendrite cable properties, are the dominant mechanism underlying the maturation of neuronal computation. These mechanisms favor the emergence of a spatially compartmentalized two-stage integration model promoting location-dependent integration within dendritic subunits.


2021 ◽  
Vol 7 (1) ◽  
pp. 9-14
Author(s):  
Obukoeroro John ◽  
◽  
Uguru H.E. ◽  

Electrical cables are the bedrock of every electrical wiring and installation. In this study, some essential cable properties (size, electrical resistivity and flame retardant) of electrical cables sold in Bayelsa state were determined according to NIS-approved methods. Four commonly used electrical cables (1 mm2, 1.5 mm2, 2.5 mm2, and 4 mm2) in Bayelsa State were sampled. Results obtained showed that most of the electrical cables sold within the Yenagoa metropolis fell below International Standards. Only 58% of the 1 mm2, 43% of the 1.5 mm2, 62% of the 2.5 mm2 and 46% of the 4 mm2 cables met the NIS recommended sizes. For electrical resistivity, most of the cables failed to meet the NIS recommendations. The resistivity of 45% of the 1 mm2 sampled cable, 39% of 1.5 mm2, 52% of the 2.5 mm2 and 33% of the 4 mm2 sampled cable were above the maximum limits approved by the Nigeria Industrial Standard. High resistivity observed in these cables can lead to electrical fire due to temperature buildup within the cable. Most of the cable insulators were made from good fire retarding materials. 92% of the 1 mm2, 93% of the 1.5 mm2, 89% of the 2.5 mm2 and 87% of the 4 mm2 cable insulators had flame retarding characteristics. Results from this study can be used as a guide by standard regulatory agencies to monitor the sales of electrical cables in the state since most of the cables sampled in this study fell below National and International standards. Keywords: Electrical cables, electrical fire, electrical resistivity, fire retardant, standards


2021 ◽  
Author(s):  
Tobias Bock ◽  
Steven A. Siegelbaum

AbstractSynaptic inputs that target distal regions of neuronal dendrites can often generate local dendritic spikes that can amplify synaptic depolarization, induce synaptic plasticity, and enhance neuronal output. However, distal dendritic spikes are subject to significant attenuation by dendritic cable properties, and often produce only a weak subthreshold depolarization of the soma. Nonetheless, such spikes have been implicated in memory storage, sensory perception and place field formation. How can such a weak somatic response produce such powerful behavioral effects? Here we use dual dendritic and somatic recordings in acute hippocampal slices to reveal that dendritic spike propagation, but not spike initiation, is strongly enhanced when the somatic resting potential is depolarized, likely as a result of increased inactivation of A-type K+ channels. Somatic depolarization also facilitates the induction of a form of dendritic spike driven heterosynaptic plasticity that enhances memory specificity. Thus, the effect of somatic membrane depolarization to enhance dendritic spike propagation and long-term synaptic plasticity is likely to play an important role in hippocampal-dependent spatial representations as well as learning and memory.


Author(s):  
Xianhao Li ◽  
Li Ren ◽  
Ying Xu ◽  
Jiajie Long ◽  
Jing Shi ◽  
...  

2020 ◽  
pp. 147592172096418
Author(s):  
Shenghan Zhang ◽  
Han Liu ◽  
Jeffrey Cheng ◽  
Matthew J DeJong

Distributed fiber optic (strain) sensing, which provides the unique advantage of sensing damage (e.g. cracking) at locations that are not known a priori, has been increasingly used in civil engineering. Quantitative crack measurement requires the translation of a discontinuous displacement field at the crack to a continuous strain deformation in the fiber. The main purpose of this article is to develop a mechanical model to explain the fiber deformation in the presence of a displacement discontinuity. The proposed mechanical model is validated with experimental results from cable calibration tests and concrete cracking tests. The model is extended to simulate the effects of multiple closely spaced cracks on fiber optic strain measurement, and this model is used to create an algorithm to automatically distinguish multiple cracks in distributed fiber optic (strain) sensing strain distributions. Using the model and two shape parameters, kurtosis and standard variation, the effects of cable properties (i.e. shear stiffness between cable and fiber, cable radius, elastic modulus, and interface cohesion) on the shape of fiber optic strain distributions across cracks are also quantified. The results provide an indication of beneficial cable properties for various measurement objectives.


2020 ◽  
Author(s):  
Patrick Paitz ◽  
Pascal Edme ◽  
Cédric Schmelzbach ◽  
Joesph Doetsch ◽  
Dominik Gräff ◽  
...  

<p>With the upside of high spatial and temporal sampling even in remote or urban areas using existing fiber-optic infrastructure, Distributed Acoustic Sensing (DAS) is in the process of revolutionising the way we look at seismological data acquisition. However, recent publications show variations of the quality of DAS measurements along a single cable. In addition to site- and orientation effects, data quality is strongly affected by the transfer function between the deforming medium and the fiber, which in turn depends on the fiber-ground coupling and the cable properties. Analyses of the DAS instrument response functions in a limited part of the seismological frequency band are typically based on comparisons with well-coupled conventional seismometers for which the instrument response is sufficiently well known to be removed from the signal.</p><p>In this study, we extend the common narrow-band analyses to DAS response analyses covering a frequency range of five orders of magnitude ranging from ~4000 s period to frequencies up to ~100 Hz. This is based on a series of experiments in Switzerland, including (1) active controlled-source experiments with co-located seismometers and geophones, (2) low-frequency strain induced by hydraulic injection in a borehole with co-located Fiber-Bragg-Grating (FBG) strain-meters, and (3) local to teleseismic ice- and earthquake recordings with  co-located broadband stations.</p><p>Initial results show a site-unspecific, approximately flat instrument response for all experiments.</p><p>The initial results suggest that the amplitude and phase information of DAS recordings are sufficient for conventional geophysical methods such as event localisation, full-waveform inversion, ambient noise tomography and even event magnitude estimation. Despite the promising initial results, further engagement by the DAS community is required to evaluate the DAS performance and repeatability among different interrogation units and study sites.</p>


2020 ◽  
Vol 12 (2) ◽  
Author(s):  
Leila Notash

Abstract In this paper, the cable tension and platform deflection of cable-driven robots are studied. The significance of cable density, elasticity, and cross-sectional area; platform mass, radius, and center of mass; the external wrench and platform orientation on the cable tension, platform deflection, and workspace of the planar cable robots is investigated. It is shown that, in addition to the cable mass, external wrench has a more prominent effect on the workspace of the catenary cable model. Moreover, design issues and parameters affecting the manipulator deflection are examined, and those that would result in disjointed workspace regions and deflection maps are identified. It is presented that the change in the deflection is gradual throughout the workspace for a constant external wrench. For the catenary model, depending on the cable properties, platform orientation, manipulator design, and external wrench, the workspace with the deflection limit may consist of disconnected regions.


Author(s):  
Leila Notash

Abstract In this paper, the cable tension and platform deflection of cable-robots are investigated. The significance of cable density, elasticity and cross-sectional area; platform mass, radius and center of mass; external wrench and platform orientation on the cable tension, platform deflection and workspace of the planar cable robots is investigated. It is shown that, in addition to cable mass, the effect of external wrench on the workspace of catenary cable model could be more prominent. Moreover, design issues and parameters affecting the manipulator deflection are examined, and those that would result in disjointed workspace regions and deflection maps are identified. It is presented that the change in deflection is gradual throughout the workspace for constant external wrench. For the catenary model, depending on the cable properties, platform orientation, manipulator design, and external wrench, the workspace with deflection limit may consist of disconnected regions.


Sensors ◽  
2019 ◽  
Vol 19 (11) ◽  
pp. 2520 ◽  
Author(s):  
Jinlong Piao ◽  
Eui-Sun Kim ◽  
Hongseok Choi ◽  
Chang-Bae Moon ◽  
Eunpyo Choi ◽  
...  

In a cable-driven parallel robot (CDPR), force sensors are utilized at each winch motor to measure the cable tension in order to obtain the force distribution at the robot end-effector. However, because of the effects of friction in the pulleys and the unmodeled cable properties of the robot, the measured cable tensions are often inaccurate, which causes force-control difficulties. To overcome this issue, this paper presents an artificial neural network (ANN)-based indirect end-effector force-estimation method, and its application to CDPR force control. The pulley friction and other unmodeled effects are considered as black-box uncertainties, and the tension at the end-effector is estimated by compensating for these uncertainties using an ANN that is developed using the training datasets from CDPR experiments. The estimated cable tensions at the end-effector are used to design a P-controller to track the desired force. The performance of the proposed ANN model is verified through comparisons with the forces measured directly at the end-effector. Furthermore, cable force control is implemented based on the compensated tensions to evaluate the performance of the CDPR in wrench space. The experimental results show that the proposed friction-compensation method is suitable for application in CDPRs to control the cable force.


Author(s):  
Harsh Atul Godbole ◽  
Ryan James Caverly ◽  
James Richard Forbes

This paper investigates the dynamic modeling and adaptive control of a single degree-of-freedom flexible cable-driven parallel robot (CDPR). A Rayleigh–Ritz cable model is developed that takes into account the changes in cable mass and stiffness due to its winding and unwinding around the actuating winch, with the changes distributed throughout the cables. The model uses a set of state-dependent basis functions for discretizing cables of varying length. A novel energy-based model simplification is proposed to further facilitate reduction in the computational load when performing numerical simulations involving the Rayleigh–Ritz model. For control purposes, the massive payload assumption is used to decouple the rigid and elastic dynamics of the system, and a modified input torque and modified output payload rate are used to develop a passive input–output map for the naturally noncollocated system. A passivity-based adaptive control law is derived to dynamically adapt to changes in cable properties and payload inertia, and different forms of the adaptive control law regressor are proposed. It is shown through numerical simulations that the adaptive controller is robust to changes in payload mass and cable properties, and the selection of the regressor form has a significant impact on the performance of the controller.


Sign in / Sign up

Export Citation Format

Share Document