scholarly journals Microanchored borehole fiber optics allows strain profiling of the shallow subsurface

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Cheng-Cheng Zhang ◽  
Bin Shi ◽  
Song Zhang ◽  
Kai Gu ◽  
Su-Ping Liu ◽  
...  

AbstractVertical deformation profiles of subterranean geological formations are conventionally measured by borehole extensometry. Distributed strain sensing (DSS) paired with fiber-optic cables installed in the ground opens up possibilities for acquiring high-resolution static and quasistatic strain profiles of deforming strata, but it is currently limited by reduced data quality due to complicated patterns of interaction between the buried cables and their surroundings, especially in upper soil layers under low confining pressures. Extending recent DSS studies, we present an improved approach using microanchored fiber-optic cables—designed to optimize ground-to-cable coupling at the near surface—for strain determination along entire lengths of vertical boreholes. We proposed a novel criterion for soil–cable coupling evaluation based on the geotechnical bearing capacity theory. We applied this enhanced methodology to monitor groundwater-related vertical motions in both laboratory and field experiments. Corroborating extensometer recordings, acquired simultaneously, validated fiber optically determined displacements, suggesting microanchored DSS as an improved means for detecting and monitoring shallow subsurface strain profiles.

Author(s):  
Nathaniel J. Lindsey ◽  
Eileen R. Martin

Distributed acoustic sensing (DAS) is an emerging technology that repurposes a fiber-optic cable as a dense array of strain sensors. This technology repeatedly pings a fiber with laser pulses, measuring optical phase changes in Rayleigh backscattered light. DAS is beneficial for studies of fine-scale processes over multi-kilometer distances, long-term time-lapse monitoring, and deployment in logistically challenging areas (e.g., high temperatures, power limitations, land access barriers). These benefits have motivated a decade of applications in subsurface imaging and microseismicity monitoring for energy production and carbon sequestration. DAS arrays have recorded microearthquakes, regional earthquakes, teleseisms, and infrastructure signals. Analysis of these wavefields is enabling earthquake seismology where traditional sensors were sparse, as well as structural and near-surface seismology. These studies improved understanding of DAS instrument response through comparison with traditional seismometers. More recently, DAS has been used to study cryosphere systems, marine geophysics, geodesy, and volcanology. Further advancement of geoscience using DAS requires several community efforts related to instrument access, training, outreach, and cyberinfrastructure. ▪ DAS is a seismic acquisition technology repurposing fiber optics as arrays of dynamic strain sensors at 1- to 10-m spacing over kilometers. ▪ Easy DAS installations have availed time-lapse geophysical sensing in formerly inaccessible sites: urban, icy, and offshore areas. ▪ High-frequency wavefields recorded by DAS are analyzed with array-based methods to characterize seismic sources and image the subsurface. ▪ DAS has shown low-frequency sensitivity in the laboratory and field, for slow hydrodynamic and geodynamic processes. Expected final online publication date for the Annual Review of Earth and Planetary Sciences, Volume 49 is May 2021. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.


Sensors ◽  
2021 ◽  
Vol 21 (4) ◽  
pp. 1397
Author(s):  
Yang-Duan Su ◽  
Yuliya Preger ◽  
Hannah Burroughs ◽  
Chenhu Sun ◽  
Paul Ohodnicki

Applications of fiber optic sensors to battery monitoring have been increasing due to the growing need of enhanced battery management systems with accurate state estimations. The goal of this review is to discuss the advancements enabling the practical implementation of battery internal parameter measurements including local temperature, strain, pressure, and refractive index for general operation, as well as the external measurements such as temperature gradients and vent gas sensing for thermal runaway imminent detection. A reasonable matching is discussed between fiber optic sensors of different range capabilities with battery systems of three levels of scales, namely electric vehicle and heavy-duty electric truck battery packs, and grid-scale battery systems. The advantages of fiber optic sensors over electrical sensors are discussed, while electrochemical stability issues of fiber-implanted batteries are critically assessed. This review also includes the estimated sensing system costs for typical fiber optic sensors and identifies the high interrogation cost as one of the limitations in their practical deployment into batteries. Finally, future perspectives are considered in the implementation of fiber optics into high-value battery applications such as grid-scale energy storage fault detection and prediction systems.


2021 ◽  
Author(s):  
Chet Hopp ◽  
Yves Guglielmi ◽  
Antonio Pio Rinaldi ◽  
Florian Soom ◽  
Quinn Wenning ◽  
...  

2015 ◽  
Vol 45 (4) ◽  
pp. 943-965 ◽  
Author(s):  
Peter Sutherland ◽  
W. Kendall Melville

AbstractWave breaking removes energy from the surface wave field and injects it into the upper ocean, where it is dissipated by viscosity. This paper presents an investigation of turbulent kinetic energy (TKE) dissipation beneath breaking waves. Wind, wave, and turbulence data were collected in the North Pacific Ocean aboard R/P FLIP, during the ONR-sponsored High Resolution Air-Sea Interaction (HiRes) and Radiance in a Dynamic Ocean (RaDyO) experiments. A new method for measuring TKE dissipation at the sea surface was combined with subsurface measurements to allow estimation of TKE dissipation over the entire wave-affected surface layer. Near the surface, dissipation decayed with depth as z−1, and below approximately one significant wave height, it decayed more quickly, approaching z−2. High levels of TKE dissipation very near the sea surface were consistent with the large fraction of wave energy dissipation attributed to non-air-entraining microbreakers. Comparison of measured profiles with large-eddy simulation results in the literature suggests that dissipation is concentrated closer to the surface than previously expected, largely because the simulations did not resolve microbreaking. Total integrated dissipation in the water column agreed well with dissipation by breaking for young waves, (where cm is the mean wave frequency and is the atmospheric friction velocity), implying that breaking was the dominant source of turbulence in those conditions. The results of these extensive measurements of near-surface dissipation over three field experiments are discussed in the context of observations and ocean boundary layer modeling efforts by other groups.


1992 ◽  
Vol 72 (4) ◽  
pp. 1616-1621 ◽  
Author(s):  
H. Iwasaki ◽  
K. Yoshizaki ◽  
H. Koyano

We have developed a method for monitoring regional venous oxygen saturation. The key feature of this system is the use of highly flexible polymer fiber optics, and this flexibility allowed the production of a new fiber-optic transmission catheter. The space between the “face-to-face” positioned fiber-optic tips forms a remote catheter-based transmission cell. Our method applies Twersky's theory, in which absorption and scattering can be treated independently. Fresh rabbit blood was pumped through a disk oxygenator in which gas exchange occurred and passed the catheter. Simultaneous results obtained by the catheter and a cuvette oximeter were excellent (r = 0.99, SD = 1.1%). Oxygen saturation measured by this catheter was independent of vessel wall artifacts, blood pH, and flow velocity. Another application of this method is measurement of blood flow by the dye- (indocyanine green) dilution technique. The results of flow measurements by the catheter appeared to be satisfactory (r = 0.99, SD = 1.7%). This study concludes that our method is effective for monitoring the balance between regional oxygen supply and demand.


Sensors ◽  
2018 ◽  
Vol 18 (8) ◽  
pp. 2528 ◽  
Author(s):  
Hiroshi Yamazaki ◽  
Ichiro Kurose ◽  
Michiko Nishiyama ◽  
Kazuhiro Watanabe

In this paper, a novel pendulum-type accelerometer based on hetero-core fiber optics has been proposed for structural health monitoring targeting large-scale civil infrastructures. Vibration measurement is a non-destructive method for diagnosing the failure of structures by assessing natural frequencies and other vibration patterns. The hetero-core fiber optic sensor utilized in the proposed accelerometer can serve as a displacement sensor with robustness to temperature changes, in addition to immunity to electromagnetic interference and chemical corrosions. Thus, the hetero-core sensor inside the accelerometer measures applied acceleration by detecting the rotation of an internal pendulum. A series of experiments showed that the hetero-core fiber sensor linearly responded to the rotation angle of the pendulum ranging within (−6°, 4°), and furthermore the proposed accelerometer could reproduce the waveform of input vibration in a frequency band of several Hz order.


Sign in / Sign up

Export Citation Format

Share Document