scholarly journals Effect of cutting speed on chip formation and wear mechanisms of coated carbide tools when ultra-high-speed face milling titanium alloy Ti-6Al-4V

2017 ◽  
Vol 9 (7) ◽  
pp. 168781401771370 ◽  
Author(s):  
Anhai Li ◽  
Jun Zhao ◽  
Guanming Hou

Chip morphology and its formation mechanisms, cutting force, cutting power, specific cutting energy, tool wear, and tool wear mechanisms at different cutting speeds of 100–3000 m/min during dry face milling of Ti-6Al-4V alloy using physical vapor deposition-(Ti,Al)N-TiN-coated cemented carbide tools were investigated. The cutting speed was linked to the chip formation process and tool failure mechanisms of the coated cemented cutting tools. Results revealed that the machined chips exhibited clear saw-tooth profile and were almost segmented at high cutting speeds, and apparent degree of saw-tooth chip morphology occurred as cutting speed increased. Abrasion in the flank face, the adhered chips on the wear surface, and even melt chips were the most typical wear forms. Complex and synergistic interactions among abrasive wear, coating delamination, adhesive wear, oxidation wear, and thermal mechanical–mechanical impacts were the main wear or failure mechanisms. As the cutting speed was very high (>2000 m/min), discontinuous or fragment chips and even melt chips were produced, but few chips can be collected because the chips easily burned under the extremely high cutting temperature. Large area flaking, extreme abrasion, and serious adhesion dominated the wear patterns, and the tool wear mechanisms were the interaction of thermal wear and mechanical wear or failure under the ultra-high frequency and strong impact thermo-mechanical loads.

Materials ◽  
2020 ◽  
Vol 13 (21) ◽  
pp. 5011
Author(s):  
Cécile Escaich ◽  
Zhongde Shi ◽  
Luc Baron ◽  
Marek Balazinski

The TiC particles in titanium metal matrix composites (TiMMCs) make them difficult to machine. As a specific MMC, it is legitimate to wonder if the cutting mechanisms of TiMMCs are the same as or similar to those of MMCs. For this purpose, the tool wear mechanisms for turning, milling, and grinding are reviewed in this paper and compared with those for other MMCs. In addition, the chip formation and morphology, the material removal mechanism and surface quality are discussed for the different machining processes and examined thoroughly. Comparisons of the machining mechanisms between the TiMMCs and MMCs indicate that the findings for other MMCs should not be taken for granted for TiMMCs for the machining processes reviewed. The increase in cutting speed leads to a decrease in roughness value during grinding and an increase of the tool life during turning. Unconventional machining such as laser-assisted turning is effective to increase tool life. Under certain conditions, a “wear shield” was observed during the early stages of tool wear during turning, thereby increasing tool life considerably. The studies carried out on milling showed that the cutting parameters affecting surface roughness and tool wear are dependent on the tool material. The high temperatures and high shears that occur during machining lead to microstructural changes in the workpiece during grinding, and in the chips during turning. The adiabatic shear band (ASB) of the chips is the seat of the sub-grains’ formation. Finally, the cutting speed and lubrication influenced dust emission during turning but more studies are needed to validate this finding. For the milling or grinding, there are major areas to be considered for thoroughly understanding the machining behavior of TiMMCs (tool wear mechanisms, chip formation, dust emission, etc.).


2013 ◽  
Vol 459 ◽  
pp. 424-427 ◽  
Author(s):  
Jozef Jurko ◽  
Anton Panda

The content of this article also focuses on the analysis of the tool life of screw drills. This paper presents the conclusions of tests on a stainless steel DIN 1.4301.The results of the article are conclusions for working theory and practice for drilling of stainless steels. Based on the cutting tests, cutting speeds of 30 to 60 m/min, feed rate of 0.04to0.1 mm and screw drill carbide monolite.


2011 ◽  
Vol 21 (6) ◽  
pp. 797-808 ◽  
Author(s):  
Patricia Muñoz-Escalona ◽  
Nayarit Díaz ◽  
Zulay Cassier

2012 ◽  
Vol 505 ◽  
pp. 31-36 ◽  
Author(s):  
Moaz H. Ali ◽  
Basim A. Khidhir ◽  
Bashir Mohamed ◽  
A.A. Oshkour

Titanium alloys are desirable materials for aerospace industry because of their excellent combination of high specific strength, lightweight, fracture resistant characteristics, and general corrosion resistance. Therefore, the chip morphology is very important in the study of machinability of metals as well as the study of cutting tool wear. The chips are generally classified into four groups: continuous chips, chips with built-up-edges (BUE), discontinuous chips and serrated chips. . The chip morphology and segmentation play a predominant role in determining machinability and tool wear during the machining process. The mechanics of segmented chip formation during orthogonal cutting of titanium alloy Ti–6Al–4V are studied in detail with the aid of high-speed imaging of the chip formation zone. The finite element model of chip formation of Ti–6Al–4V is suggested as a discontinuous type chip at lower cutting speeds developing into a continuous, but segmented, chip at higher cutting speeds. The prediction by using finite-element modeling method and simulation process in machining while create chips formation can contribute in reducing the cost of manufacturing in terms of prolongs the cutting tool life and machining time saving.


2013 ◽  
Vol 581 ◽  
pp. 26-31
Author(s):  
Ivan Mrkvica ◽  
Miroslav Janoš

This article focuses on the analysis of tool wear mechanisms in milling of Inconel 718. Inconel 718 is tough and highly temperature resistive material, which is used due to its excellent properties especially in aggressive corrosive medium. Machining of this alloy is still complicated. The feasibility of four inserts tested for milling of Inconel 718 has been shown in the work. Different cutting speeds and feeds were used. Experimental tests were performed in order to analyze wear patterns evolution. It was found influence of cutting conditions and type if insert in tool wear mode.


2011 ◽  
Vol 188 ◽  
pp. 78-83
Author(s):  
Xin Qiang Zhuang ◽  
Chuan Zhen Huang ◽  
Zi Ye Liu ◽  
Bin Zou ◽  
H.L. Liu ◽  
...  

The milling experiments of the annealed T10A steel were carried out in the various cutting conditions using the coated cemented carbide tool. The cutting parameters were designed by the multi-factor orthogonal experiment method, and the effects of cutting speed, feed, axial depth of cut and radial depth of cut on the cutting force and tool wear were investigated. The tool wear mechanisms were also discussed. Adhesion, abrasion, diffusion and oxidation were the main tool wear mechanisms. According to these investigations, the optimizing cutting parameter was recommended.


Author(s):  
Brian Davis ◽  
David Dabrow ◽  
Licheng Ju ◽  
Anhai Li ◽  
Chengying Xu ◽  
...  

Magnesium (Mg) and its alloys are among the lightest metallic structural materials, making them very attractive for use in the aerospace and automotive industries. Recently, Mg has been used in metal matrix composites (MMCs), demonstrating significant improvements in mechanical performance. However, the machinability of Mg-based MMCs is still largely elusive. In this study, Mg-based MMCs are machined using a wide range of cutting speeds in order to elucidate both the chip morphology and chip formation mechanism. Cutting speed is found to have the most significant influence on both the chip morphology and chip formation mechanism, with the propensity of discontinuous, particle-type chip formation increasing as the cutting speed increases. Saw-tooth chips are found to be the primary chip morphology at low cutting speeds (lower than 0.5 m/s), while discontinuous, particle-type chips prevail at high cutting speeds (higher than 1.0 m/s). Using in situ high speed imaging, the formation of the saw-tooth chip morphology is found to be due to crack initiation at the free surface. However, as the cutting speed (and strain rate) increases, the formation of the discontinuous, particle-type chip morphology is found to be due to crack initiation at the tool tip. In addition, the influences of tool rake angle, particle size, and particle volume fracture are investigated and found to have little effect on the chip morphology and chip formation mechanism.


1985 ◽  
Vol 107 (1) ◽  
pp. 55-63 ◽  
Author(s):  
D. Lee

Orthogonal machining experiments were conducted at different cutting speeds ranging from 8.5 × 10−2 cm/s (0.17 ft/min) to about 2.5 × 102 cm/s (492.1 ft/min) with 6061-T6 aluminum, 4340 steel, and Ti-6A1-4V titanium to examine the chip formation process. The most pronounced effect of the cutting speed on chip morphology was observed with the titanium alloy; the chips remained segmented at all speeds, but became continuous macroscopically at high cutting speeds. The steel chip also became continuous and oxidized, showing the effect of localized heating. The changing chip morphology that is accompanied with decreasing normal force at the high cutting speed is rationalized on the basis of localized adiabatic heating, which is dependent on the thermal-mechanical properties of each material.


Author(s):  
Brian Davis ◽  
David Dabrow ◽  
Licheng Ju ◽  
Anhai Li ◽  
Chengying Xu ◽  
...  

Magnesium (Mg) and its alloys are among the lightest metallic structural materials, making them very attractive for use in the aerospace and automotive industries. Recently, Mg has been used in metal matrix composites (MMCs), demonstrating significant improvements in mechanical performance. However, the machinability of Mg-based MMCs is still largely elusive. In this study, Mg-based MMCs are machined using a wide range of cutting speeds in order to elucidate both the chip morphology and chip formation mechanism. Cutting speed is found to have the most significant influence on both the chip morphology and chip formation mechanism, with the propensity of discontinuous, particle-type chip formation increasing as the cutting speed increases. Saw-tooth chips are found to be the primary chip morphology at low cutting speeds (lower than 0.5 m/s), while discontinuous, particle-type chips prevail at high cutting speeds (higher than 1.0 m/s). Using in situ high-speed imaging, the formation of the saw-tooth chip morphology is found to be due to crack initiation at the free surface. However, as the cutting speed (and strain rate) increases, the formation of the discontinuous, particle-type chip morphology is found to be due to crack initiation at the tool tip. In addition, the influences of tool rake angle, particle size, and particle volume fracture are investigated and found to have little effect on the chip morphology and chip formation mechanism.


Sign in / Sign up

Export Citation Format

Share Document