The Holocene fluvial history of the Tremithos river (south central Cyprus) and its linkage to archaeological records

2015 ◽  
Vol 20 (2) ◽  
pp. 184-201 ◽  
Author(s):  
Matthieu Ghilardi ◽  
Stéphane Cordier ◽  
Jean-Michel Carozza ◽  
David Psomiadis ◽  
Jean Guilaine ◽  
...  
1992 ◽  
Vol 29 (8) ◽  
pp. 1746-1755 ◽  
Author(s):  
Michael J. Bovis ◽  
Penny Jones

Large earthflows in south-central British Columbia have exhibited regionally consistent fluctuations in their movement during the Holocene. Over the past 60 years, air photographs show that many earthflows were reactivated during the relatively wet period 1950–1985. Over the past 300 years, a fairly coherent relationship is established between periods of wetter climate, defined by the tree-ring record, and phases of slope movement, defined by the record of compression-wood development in conifers located near earthflow headscarps. On a time scale of several thousand years, stratigraphic evidence shows that many large earthflows in the region underwent significant reactivation of movement in the post-Mazama period, during the relatively wet, cool Neoglacial interval of the Holocene. These lines of evidence indicate that Holocene hydroclimatic changes have exerted an important influence on the regimen of large earthflows. Earthflows present a wealth of paleogeomorphic information, hitherto largely neglected, that allows a reconstruction of the changing rate of mass movement with time.


2000 ◽  
Vol 62 (2) ◽  
pp. 90-104 ◽  
Author(s):  
J. M. Espíndola ◽  
J. L. Macías ◽  
R. I. Tilling ◽  
M. F. Sheridan

2004 ◽  
Vol 41 (1) ◽  
pp. 103-125 ◽  
Author(s):  
Nathan T Petersen ◽  
Paul L Smith ◽  
James K Mortensen ◽  
Robert A Creaser ◽  
Howard W Tipper

Jurassic sedimentary rocks of southern to central Quesnellia record the history of the Quesnellian magmatic arc and reflect increasing continental influence throughout the Jurassic history of the terrane. Standard petrographic point counts, geochemistry, Sm–Nd isotopes and detrital zircon geochronology, were employed to study provenance of rocks obtained from three areas of the terrane. Lower Jurassic sedimentary rocks, classified by inferred proximity to their source areas as proximal or proximal basin are derived from an arc source area. Sandstones of this age are immature. The rocks are geochemically and isotopically primitive. Detrital zircon populations, based on a limited number of analyses, have homogeneous Late Triassic or Early Jurassic ages, reflecting local derivation from Quesnellian arc sources. Middle Jurassic proximal and proximal basin sedimentary rocks show a trend toward more evolved mature sediments and evolved geochemical characteristics. The sandstones show a change to more mature grain components when compared with Lower Jurassic sedimentary rocks. There is a decrease in εNdT values of the sedimentary rocks and Proterozoic detrital zircon grains are present. This change is probably due to a combination of two factors: (1) pre-Middle Jurassic erosion of the Late Triassic – Early Jurassic arc of Quesnellia, making it a less dominant source, and (2) the increase in importance of the eastern parts of Quesnellia and the pericratonic terranes, such as Kootenay Terrane, both with characteristically more evolved isotopic values. Basin shale environments throughout the Jurassic show continental influence that is reflected in the evolved geochemistry and Sm–Nd isotopes of the sedimentary rocks. The data suggest southern Quesnellia received material from the North American continent throughout the Jurassic but that this continental influence was diluted by proximal arc sources in the rocks of proximal derivation. The presence of continent-derived material in the distal sedimentary rocks of this study suggests that southern Quesnellia is comparable to known pericratonic terranes.


The Holocene ◽  
2021 ◽  
pp. 095968362110032
Author(s):  
Halinka Di Lorenzo ◽  
Pietro Aucelli ◽  
Giuseppe Corrado ◽  
Mario De Iorio ◽  
Marcello Schiattarella ◽  
...  

The Garigliano alluvial-coastal plain, at the Latium-Campania border (Italy), witnessed a long-lasting history of human-environment interactions, as demonstrated by the rich archaeological knowledge. With the aim of reconstructing the evolution of the landscape and its interaction with human activity during the last millennia, new pollen results from the coastal sector of the Garigliano Plain were compared with the available pollen data from other nearby sites. The use of pollen data from both the coastal and marine environment allowed integrating the local vegetation dynamics within a wider regional context spanning the last 8000 years. The new pollen data presented in this study derive from the analysis of a core, drilled in the coastal sector, which intercepted the lagoon-marshy environments that occurred in the plain as a response to the Holocene transgression and subsequent coastal progradation. Three radiocarbon ages indicate that the chronology of the analyzed core interval ranges from c. 7200 to c. 2000 cal yr BP. The whole data indicate that a dense forest cover characterized the landscape all along the Prehistoric period, when a few signs of human activity are recorded in the spectra, such as cereal crops, pasture activity and fires. The main environmental changes, forced by natural processes (coastal progradation) but probably enhanced by reclamation works, started from the Graeco-Roman period and led to the reduction of swampy areas that favoured the colonisation of the outer plain.


Sign in / Sign up

Export Citation Format

Share Document