Tissue Transglutaminase Enhances Fibrin-Dependent Angiogenesis and Extracellular Matrix Formation During Tissue Repair by Altering Gene Expression and Is Inhibited by Aspirin.

Blood ◽  
2009 ◽  
Vol 114 (22) ◽  
pp. 3055-3055
Author(s):  
Thung S. Lai ◽  
Christopher Davies ◽  
Charles Greenberg

Abstract Abstract 3055 Poster Board II-1031 Fibrin deposition triggers an injury response that involves the migration of inflammatory cells, formation of new blood vessels and the synthesis of extracellular matrix (ECM). Tissue transglutaminase (TGM2) is a calcium dependent enzyme that covalently crosslinks a wide variety of ECM proteins producing a protease resistant matrix. TGM2 is secreted by inflammatory and endothelial cells, involved in activating transforming growth factor beta-1 (TGFbeta-1) and expressed during tissue injury. In this study, we investigated how TGM2 modulated fibrin-dependent wound healing and the associated angiogenic response. We used an animal model consisting of fibrin Z-chambers (F-ZC, dual porous plexiglass chambers containing fibrin) implanted into the subcutaneous tissue of rats and harvested subsequently for quantitative assessment of granulation tissue formation (wound healing) and microvessel density (angiogenesis). We found that local administration of recombinant TGM2 into F-ZC resulted in a dose-dependent, 2-fold increase in granulation tissue thickness by day 6 of wound healing (p<0.001), an effect similar in magnitude to 25 ng/ml of TGFbeta1 administered in the F-ZC. The pro-healing effect of TGM2 was associated with a 2-fold increase in microvessel density in granulation tissue at day 6 of wound healing response (p<0.001). As a negative control, inactive recombinant C277A/TGM2 mutant did not exhibit increased wound healing response or proangiogenic effect. The data suggested that TGM2 enhanced the transition from the inflammatory stage of wound healing to proliferation stage. The two areas where TGM2 enhanced wound healing were 1) angiogenesis and 2) deposition of ECM. To investigate TGM2-induced angiogenesis-related gene expression, total RNAs were isolated from control- and TGM2-treated F-ZCs (at Day 6). Biotin-labeled cDNA probes were synthesized, and hybridized to nylon membranes containing angiogenesis-related gene arrays (Superarray, MD). The signals were detected using streptavidin-peroxidase and quantitated. We identified increased expression of VEGF receptors Flk-1 (2-fold), Flt1 and neuropilin (1.4-fold), angiopoietin-1 (2-fold) and ephrin B2 (1.8-fold). There were decreased levels (5-fold) of matrix metalloproteinases (MMPs) and increased TGFbeta-1 receptors (1.5-fold) and connective tissue growth factor (CTGF)(1.4-fold) levels. The gene expression profile suggests that TGM2 promotes angiogenesis and enhances deposition of ECM. We then investigated whether Aspirin (Acetylsalicylic Acid, ASA) a potent anti-inflammatory agent would inhibit TGM2. ASA and another chemical acetylating agent, sulfosuccinimidyl acetate (SNA), were used to investigate whether acetylation would alter the crosslinking activity of TGM2. We found acetylation by either SNA or ASA resulted in a loss of >90% of crosslinking activity. The Lys residues that were critical for inhibition were identified by mass spectrometry as Lys468 and Lys663. Molecular modeling indicates that these Lys residues play an important role in the conformation change that occurs in TGM2 from a closed-to-open shape, i.e. inactive-to-active, transitions. In conclusion, we show that TGM2-fibrin crosslinking accelerates angiogenesis and promotes ECM deposition. This suggests that TGM2-fibrin interactions mediates outside-in signaling events that aides wound healing. Furthermore aspirin can acetylate and inhibit critical residues in TGM2 that regulate TGM-2 function. Disclosures No relevant conflicts of interest to declare.

Blood ◽  
2004 ◽  
Vol 104 (11) ◽  
pp. 2626-2626
Author(s):  
Zishan A. Haroon ◽  
Thung S. Lai ◽  
Charles S. Greenberg

Abstract Fibrin deposition triggers an injury response that involves the migration of inflammatory cells formation of new blood vessels and the synthesis of extracellular matrix (ECM). Tissue transglutaminase (TTG) is a calcium dependent enzyme that covalently crosslinks a wide variety of ECM proteins producing a protease resistant matrix. TTG is secreted by inflammatory and endothelial cells, involved in activating transforming growth factor beta-1 (TGF beta-1) and expressed during wound healing response. In this study, we investigated how TTG modulated fibrin-dependent wound healing and the associated angiogenic response. We used an animal model consisting of fibrin Z-chambers (F-ZC, dual porous plexiglass chambers containing fibrin), implanted into the subcutaneous tissue of rats and harvested subsequently for quantitative assessment of granulation tissue formation (wound healing) and microvessel density (angiogenesis). We found that local administration of recombinant TTG into F-ZC resulted in a dose-dependent, 2-fold increase in granulation tissue thickness by day 6 of wound healing (p<0.001), an effect similar in magnitude to 25 ng/ml of TGFbeta1 administered in the F-ZC. The pro-healing effect of TTG was associated with a 2-fold increase in microvessel density in granulation tissue at day 6 of wound healing response (p<0.001). As a negative control, inactive recombinant TTG mutant did not exhibit increased wound healing response or pro-angiogenic effect. The data suggested that TTG enhanced the transition from the inflammatory stage of wound healing to proliferation stage. The two areas where TTG enhanced wound healing were 1) angiogenesis and 2) deposition of matrix. To investigate TTG-induced gene expression, total RNAs were isolated from control- and TTG-treated F-ZCs (at Day 6) using Trizol reagent (Invitrogen, CA). Biotin-labeled cDNA probes were synthesized, and hybridized to nylon membranes containing angiogenesis-related gene arrays (Superarray, MD). The signals were detected using streptavidin-peroxidase and quantitated using Superarray’s software. We identified increased expression of VEGF receptors Flk-1, Flt1 and neuropilin, suggesting increased responsiveness to the potent angiogenic factor VEGF. In addition, increased levels of angiopoietin-1 and ephrin B2 were observed which are involved in vascular development and stabilization. For matrix enhancing effects, considerably decreased levels (5-fold) of matrix metalloproteinases (MMPs) coupled with increased TGFbeta receptors and connective tissue growth factor (CTGF) were observed. The gene expression profile suggests that TTG alters the balance between matrix production and destruction in favor of production resulting in increased deposition of ECM in granulation tissue. In conclusion, we have identified that TTG 1) enhances fibrin-dependent wound healing response, 2) increases angiogenesis through enhanced VEGF receptors, angiopoietin-1 and ephrin B2 expression, and 3) promoted matrix deposition by simultaneously reducing MMPs and increasing CTGF and TGFbeta receptors expression.


2021 ◽  
Vol 22 (12) ◽  
pp. 6267
Author(s):  
Meng-Jin Lin ◽  
Mei-Chun Lu ◽  
Hwan-You Chang

The goals of this study are to develop a high purity patented silk fibroin (SF) film and test its suitability to be used as a slow-release delivery for insulin-like growth factor-1 (IGF-1). The release rate of the SF film delivering IGF-1 followed zero-order kinetics as determined via the Ritger and Peppas equation. The release rate constant was identified as 0.11, 0.23, and 0.09% h−1 at 37 °C for SF films loaded with 0.65, 6.5, and 65 pmol IGF-1, respectively. More importantly, the IGF-1 activity was preserved for more than 30 days when complexed with the SF film. We show that the IGF-1-loaded SF films significantly accelerated wound healing in vitro (BALB/3T3) and in vivo (diabetic mice), compared with wounds treated with free IGF-1 and an IGF-1-loaded hydrocolloid dressing. This was evidenced by a six-fold increase in the granulation tissue area in the IGF-1-loaded SF film treatment group compared to that of the PBS control group. Western blotting analysis also demonstrated that IGF-1 receptor (IGF1R) phosphorylation in diabetic wounds increased more significantly in the IGF-1-loaded SF films group than in other experimental groups. Our results suggest that IGF-1 sustained release from SF films promotes wound healing through continuously activating the IGF1R pathway, leading to the enhancement of both wound re-epithelialization and granulation tissue formation in diabetic mice. Collectively, these data indicate that SF films have considerable potential to be used as a wound dressing material for long-term IGF-1 delivery for diabetic wound therapy.


1998 ◽  
Vol 187 (3) ◽  
pp. 297-306 ◽  
Author(s):  
Hiroshi Matsuda ◽  
Hiromi Koyama ◽  
Hiroaki Sato ◽  
Junko Sawada ◽  
Atsuko Itakura ◽  
...  

Four full-thickness skin wounds made in normal mice led to the significant increase in levels of nerve growth factor (NGF) in sera and in wounded skin tissues. Since sialoadenectomy before the wounds inhibited the rise in serum levels of NGF, the NGF may be released from the salivary gland into the blood stream after the wounds. In contrast, the fact that messenger RNA and protein of NGF were detected in newly formed epithelial cells at the edge of the wound and fibroblasts consistent with the granulation tissue produced in the wound space, suggests that NGF was also produced at the wounded skin site. Topical application of NGF into the wounds accelerated the rate of wound healing in normal mice and in healing-impaired diabetic KK/Ta mice. This clinical effect of NGF was evaluated by histological examination; the increases in the degree of reepithelialization, the thickness of the granulation tissue, and the density of extracellular matrix were observed. NGF also increased the breaking strength of healing linear wounds in normal and diabetic mice. These findings suggested that NGF immediately and constitutively released in response to cutaneous injury may contribute to wound healing through broader biological activities, and NGF improved the diabetic impaired response of wound healing.


Stroke ◽  
2012 ◽  
Vol 43 (suppl_1) ◽  
Author(s):  
Mateusz G Adamski ◽  
Yan Li ◽  
Hua Yu ◽  
Erin Wagner ◽  
Sareen Amarjeet ◽  
...  

Background: Alterations in gene expression in the peripheral blood of patients with acute stroke have been demonstrated using microarray technology. Whole blood and peripheral blood mononuclear cells (PBMCs) were used in prior studies in which panels of genes diagnostic for stroke were developed. We aimed to determine the cellular sources of alterations in gene expression by studying individual leukocyte subsets. Methods: The expression of four genes previously found to be upregulated in ischemic and hemorrhagic stroke (IL1R2, S100A9, ETS2 and F5) was measured in four leukocyte subsets: CD14+ monocytes, CD4+ T cell lymphocytes, CD20+ B cell lymphocytes and PBMCs. These four genes had been reported in at least two of the previously published stroke-related gene panels. Peripheral blood was obtained from six acute stroke patients (all <48 hours from symptom onset) and 6 age, race and sex matched control subjects. Leukocytes were separated from whole blood using density gradient centrifugation and column magnetic bead cell sorting. The purity of separated leukocyte subsets exceeded 90% and was verified with flow cytometry. Messenger RNA was isolated from each leukocyte subset and analyzed by two step RT PCR and qPCR. The expression of the four stroke-related genes was compared to the expression of a housekeeping gene (GAPDH). The relative expression of individual genes and of the 4 gene panel within cellular subsets was compared between stroke patients and control subjects. Results: Individually, IL1R2 and S100A9 were significantly over-expressed in stroke patients with a 10 fold increase for IL1R2 in PBMCs (p<0.05) and a 3 fold increase for S100A9 in the CD4+ T and CD20+ B lymphocyte subsets (p<0.05). When analyzed as a panel of four genes the expression of IL1R2, S100A9, ETS2 and F5 was significantly higher in both the CD4+ T lymphocytes (p<0.05) and CD20+ B lymphocytes (p<0.05) of stroke patients but not in the monocytes or the PBMCs. Conclusion: These results show the potential diagnostic value of selected genes from panels previously found in microarray studies in stroke patients. They also emphasize the value of panel analysis over that of single gene expression and the potential cellular specificity of alterations in gene expression. Analysis of whole blood and PBMCs alone may not reflect important dynamic changes in stroke-related gene expression.


2002 ◽  
Vol 190 (3) ◽  
pp. 375-381 ◽  
Author(s):  
Takuro Kinbara ◽  
Fumiaki Shirasaki ◽  
Shigeru Kawara ◽  
Yutaka Inagaki ◽  
Benoit de Crombrugghe ◽  
...  

2018 ◽  
Vol 5 (1) ◽  
pp. 19-29
Author(s):  
Atsushi Tanabe ◽  
Daisuke Kobayashi ◽  
Koki Maeda ◽  
Masayuki Taguchi ◽  
Hiroeki Sahara

2020 ◽  
pp. 23-33
Author(s):  
Mawada M. Funjan

Many researches focused on laser therapy of wound healing in different animal models due to the lack of a standard protocol in the application of such phototherapy. Objective:  To study the effects of 810nm laser at a constant irradiance of 41.63 mw/cm2 and exposure (illumination) time of 5,15  minutes on wounds created on Albino mice (BALB/c).      Skin wound with elliptic shape and full thickness was created on the dorsal side of  ‘45 mature male albino mice. Irradiated animals were divided into two main groups based on irradiation time, the first was irradiated for 5 min and the second for 15 min, each was subdivided into three subgroups (n=5) according to number of treatment days (3, 5 and 10 days).   Both treated and respective control (n=15) subgroups were sacrificed on days 3, 5 and 10 posttreatment.  Laser therapy was applied using a 810 nm diode laser with a continuous wave, an output power of 400 mw, and irradiance of 41.63. The 5 min dose was 12 .5 J/cm2, whereas the 15 min dose was 37.4 J/cm2. The shape of the laser beam was fitted with a convex lens as ‘beam expander’ to irradiate a circular area of 3.4 cm diameter. Laser therapy was started after surgery and repeated for 3, 5 and 10 days, while its effects were examined by histological evaluation. Results:  At day 3 of treatment with near infrared 810nm laser at doses of 12.5J/cm² and 37.4J/cm², there was no evidence of wounds healing in irradiated groups which showed no differences with the respective control groups. At day 5 of treatment, the results showed an important increase in the scores of the parameters of wound healing (formation of granulation tissue and collagen deposition) in the irradiated groups. Near infrared 810nm laser had photobiostimulation effects on wound healing at irradiance of 41.63mW/cm² and doses of 12.5J/cm² for 5 minutes and 37.4J/cm² for 15 minutes exposure time. A complete picture of wound healing response appeared in all irradiated groups within 10 days of treatment, as expressed by complete ‘re-epithelialization’, moderate granulation tissue formation, and presence of collagen fibers, while incomplete wound healing response was observed in un-irradiated control groups within the same period. The study showed that 810 nm laser therapies had significant effects on wound healing, especially at a dose of 37.4J/cm².


Sign in / Sign up

Export Citation Format

Share Document