scholarly journals Type beta transforming growth factor is a potent inhibitor of murine megakaryocytopoiesis in vitro

Blood ◽  
1987 ◽  
Vol 69 (6) ◽  
pp. 1737-1741 ◽  
Author(s):  
T Ishibashi ◽  
SL Miller ◽  
SA Burstein

To investigate the potential role of platelets in the inhibition of megakaryocytopoiesis, freeze-thawed extracts of human platelets were added to serumless liquid cultures of murine marrow. When acetylcholinesterase (AchE), a marker of megakaryocytic differentiation in mice, was assayed, a significant inhibition of enzymatic activity was noted in cultures containing the equivalent of greater than 5 X 10(6) solubilized platelets per milliliter. Freeze-thawed extracts of granulocytes had significantly less inhibitory effect than did platelets. Transforming growth factor beta (TGF-beta), a growth factor known to be inhibitory to some cell lineages and to be found at relatively high concentrations in platelets, was then added to liquid marrow cultures. A similar inhibition of AchE activity was detected when cultures were stimulated with mitogen-stimulated conditioned medium. The effect was potent with 50% inhibition of AchE activity observed at 4 pmol TGF-beta/L. To determine if TGF-beta inhibited specifically one aspect of megakaryocytic differentiation, the factor was added to isolated single megakaryocytes in serumless culture induced by interleukin 3 (IL3) to increase in size. The number of megakaryocytes increasing in size in response to IL 3 exposure was reduced from 68% to 20% when both factors were simultaneously added to cultures. Colony assays showed that megakaryocytic and granulocyte- macrophage colony detection was inhibited at picomolar concentrations of the factor. These data suggest that TGF-beta is a potent in vitro inhibitor of the murine megakaryocytic lineage, although its effects are not limited to this lineage.

Blood ◽  
1987 ◽  
Vol 69 (6) ◽  
pp. 1737-1741 ◽  
Author(s):  
T Ishibashi ◽  
SL Miller ◽  
SA Burstein

Abstract To investigate the potential role of platelets in the inhibition of megakaryocytopoiesis, freeze-thawed extracts of human platelets were added to serumless liquid cultures of murine marrow. When acetylcholinesterase (AchE), a marker of megakaryocytic differentiation in mice, was assayed, a significant inhibition of enzymatic activity was noted in cultures containing the equivalent of greater than 5 X 10(6) solubilized platelets per milliliter. Freeze-thawed extracts of granulocytes had significantly less inhibitory effect than did platelets. Transforming growth factor beta (TGF-beta), a growth factor known to be inhibitory to some cell lineages and to be found at relatively high concentrations in platelets, was then added to liquid marrow cultures. A similar inhibition of AchE activity was detected when cultures were stimulated with mitogen-stimulated conditioned medium. The effect was potent with 50% inhibition of AchE activity observed at 4 pmol TGF-beta/L. To determine if TGF-beta inhibited specifically one aspect of megakaryocytic differentiation, the factor was added to isolated single megakaryocytes in serumless culture induced by interleukin 3 (IL3) to increase in size. The number of megakaryocytes increasing in size in response to IL 3 exposure was reduced from 68% to 20% when both factors were simultaneously added to cultures. Colony assays showed that megakaryocytic and granulocyte- macrophage colony detection was inhibited at picomolar concentrations of the factor. These data suggest that TGF-beta is a potent in vitro inhibitor of the murine megakaryocytic lineage, although its effects are not limited to this lineage.


1991 ◽  
Vol 173 (3) ◽  
pp. 589-597 ◽  
Author(s):  
G Poli ◽  
A L Kinter ◽  
J S Justement ◽  
P Bressler ◽  
J H Kehrl ◽  
...  

The pleiotropic immunoregulatory cytokine transforming growth factor beta (TGF-beta) potently suppresses production of the human immunodeficiency virus (HIV), the causative agent of the acquired immunodeficiency syndrome, in the chronically infected promonocytic cell line U1. TGF-beta significantly (50-90%) inhibited HIV reverse transcriptase production and synthesis of viral proteins in U1 cells stimulated with phorbol myristate acetate (PMA) or interleukin 6 (IL-6). Furthermore, TGF-beta suppressed PMA induction of HIV transcription in U1 cells. In contrast, TGF-beta did not significantly affect the expression of HIV induced by tumor necrosis factor alpha (TNF-alpha). These suppressive effects were not mediated via the induction of interferon alpha (IFN-alpha). TGF-beta also suppressed HIV replication in primary monocyte-derived macrophages infected in vitro, both in the absence of exogenous cytokines and in IL-6-stimulated cultures. In contrast, no significant effects of TGF-beta were observed in either a chronically infected T cell line (ACH-2) or in primary T cell blasts infected in vitro. Therefore, TGF-beta may play a potentially important role as a negative regulator of HIV expression in infected monocytes or tissue macrophages in infected individuals.


1991 ◽  
Vol 173 (5) ◽  
pp. 1121-1132 ◽  
Author(s):  
R A Fava ◽  
N J Olsen ◽  
A E Postlethwaite ◽  
K N Broadley ◽  
J M Davidson ◽  
...  

We have studied the consequences of introducing human recombinant transforming growth factor beta 1 (hrTGF-beta 1) into synovial tissue of the rat, to begin to better understand the significance of the fact that biologically active TGF-beta is found in human arthritic synovial effusions. Within 4-6 h after the intra-articular injection of 1 microgram of hrTGF-beta 1 into rat knee joints, extensive recruitment of polymorphonuclear leukocytes (PMNs) was observed. Cytochemistry and high resolution histological techniques were used to quantitate the influx of PMNs, which peaked 6 h post-injection. In a Boyden chamber assay, hrTGF-beta 1 at 1-10 fg/ml elicited a chemotactic response from PMNs greater in magnitude than that evoked by FMLP, establishing that TGF-beta 1 is an effective chemotactic agent for PMNs in vitro as well as in vivo. That PMNs may represent an important source of TGF-beta in inflammatory infiltrates was strongly suggested by a demonstration that stored TGF-beta 1 was secreted during phorbol myristate acetate-stimulated degranulation in vitro. Acid/ethanol extracts of human PMNs assayed by ELISA contained an average of 355 ng of TGF/beta 1 per 10(9) cells potentially available for secretion during degranulation of PMNs. [3H]Thymidine incorporation in vivo and autoradiography of tissue sections revealed that widespread cell proliferation was triggered by TGF-beta 1 injection. Synovial lining cells and cells located deep within the subsynovial connective tissue were identified as sources of at least some of the new cells that contribute to TGF-beta 1-induced hyperplasia. Our results demonstrate that TGF-beta is capable of exerting pathogenic effects on synovial tissue and that PMNs may represent a significant source of the TGF-beta present in synovial effusions.


1993 ◽  
Vol 264 (1) ◽  
pp. L36-L42 ◽  
Author(s):  
E. M. Denholm ◽  
S. M. Rollins

Bleomycin-induced fibrosis in rodents has been used extensively as a model of human pulmonary fibrosis. The influx of monocytes observed during the early stages of fibrosis is at least partially regulated by the elaboration of chemotactic factors in the lung. Exposure of alveolar macrophages (AM phi) to bleomycin either in vivo or in vitro stimulated secretion of monocyte chemotactic activity (MCA). This MCA has been previously characterized as being primarily due to fibronectin fragments. The present experiments revealed that bleomycin also induced AM phi to secrete a second chemotactic factor, transforming growth factor-beta (TGF-beta). However, the TGF-beta secreted by macrophages was in latent form, since no TGF-beta activity was detected unless AM phi conditioned medium (CM) was acid-activated. After acidification, chemotactic activity in CM from AM phi stimulated with bleomycin in vitro was increased by 3.6, whereas activity in AM phi CM from fibrotic rats increased by 2 and that of a bleomycin-stimulated AM phi cell line increased by 1.6. This acid-activatable chemotactic activity was inhibited by antibody to TGF-beta. Bleomycin-stimulated AM phi s secreted significantly more TGF-beta than did unstimulated controls. Further, in vitro exposure of AM phi to bleomycin induced TGF-beta mRNA expression in a time- and concentration-dependent manner, with maximal mRNA being detected following a 16-h incubation with 1 microgram/ml bleomycin.


1991 ◽  
Vol 174 (4) ◽  
pp. 925-929 ◽  
Author(s):  
J Hatzfeld ◽  
M L Li ◽  
E L Brown ◽  
H Sookdeo ◽  
J P Levesque ◽  
...  

We have used antisense oligonucleotides to study the roles of transforming growth factor beta (TGF-beta) and the two antioncogenes, retinoblastoma susceptibility (Rb) and p53, in the negative regulation of proliferation of early hematopoietic cells in culture. The antisense TGF-beta sequence significantly enhanced the frequency of colony formation by multi-lineage, early erythroid, and granulomonocytic progenitors, but did not affect colony formation by late progenitors. Single cell culture and limiting dilution analysis indicated that autocrine TGF-beta is produced by a subpopulation of early progenitors. Antisense Rb but not antisense p53 yielded similar results in releasing multipotential progenitors (colony-forming unit-granulocyte/erythroid/macrophage/megakaryocyte) from quiescence. Rb antisense could partially reverse the inhibitory effect of exogenous TGF-beta. Anti-TGF-beta blocking antibodies, antisense TGF-beta, or Rb oligonucleotides all had similar effects. No additive effects were observed when these reagents were combined, suggesting a common pathway of action. Our results are consistent with the model that autocrine production of TGF-beta negatively regulates the cycling status of early hematopoietic progenitors through interaction with the Rb gene product.


1994 ◽  
Vol 267 (6) ◽  
pp. E990-E1001 ◽  
Author(s):  
M. Slater ◽  
J. Patava ◽  
K. Kingham ◽  
R. S. Mason

Human fetal osteoblast-like cells formed a regular multilayered structure in vitro with an extensive collagen-based extracellular matrix. With colloidal gold immunocytochemistry, labels for alkaline phosphatase and osteocalcin were distributed in a relatively diffuse pattern, in contrast to the bone growth factors, insulin-like growth factors I and II (IGF-I and IGF-II), transforming growth factor-beta 1 (TGF-beta 1), and basic fibroblast growth factor, which were colocalized in the collagenous matrix of the multilayer. The inclusion of 17 beta-estradiol (10(-11) to 10(-9) M) in the culture medium increased multilayer depths, increased labeling for IGF-I, IGF-II, and TGF-beta 1, and resulted in earlier detection of TGF-beta 1 label. In contrast, the increase in multilayer depth resulting from treatment with human platelets, an exogenous source of growth factors, was not accompanied by an increase in matrix IGF-I, IGF-II, or TGF-beta 1 label, suggesting a particular effect of estradiol to facilitate this process. Because growth factors in bone matrix may act as coupling agents when released during resorption, reduced growth factor incorporation in the presence of reduced sex steroid concentrations may lead to uncoupling of resorption and subsequent formation.


1995 ◽  
Vol 268 (2) ◽  
pp. L230-L238 ◽  
Author(s):  
D. J. Romberger ◽  
P. Pladsen ◽  
L. Claassen ◽  
M. Yoshida ◽  
J. D. Beckmann ◽  
...  

Fibronectin (Fn) is involved in the migration of epithelial cells in re-epithelialization of wounds. Epithelial cell-derived Fn is particularly potent as a chemotactic factor for bronchial epithelial cells (BECs) in vitro. Thus modulation of airway epithelial cell Fn may be a key aspect of airway repair. Insulin is both an important growth factor and known chemotactic factor for cultured BECs. We postulated that insulin may modulate Fn production of cultured BECs. We examined this hypothesis utilizing bovine BECs in culture with serum-free media with and without insulin. BECs grown in media without insulin released more Fn into culture supernatants and contained more Fn in cell layers than cells grown with insulin. Labeling of cells with [35S]methionine demonstrated an increase in new protein production and Fn mRNA expression was increased. Increased Fn in BEC cultures without insulin was associated with an increase in active transforming growth factor-beta (TGF-beta) release as measured by a standard bioassay. Increased BEC Fn in cultures without insulin was partially inhibited by exposure of cultures to TGF-beta antibody. Thus insulin appears to modulate BEC Fn production in vitro in part through a TGF-beta-dependent mechanism. Insulin may be involved in airway repair mechanisms through modulation of epithelial cell Fn production.


1991 ◽  
Vol 277 (1) ◽  
pp. 165-173 ◽  
Author(s):  
D Huber ◽  
A Fontana ◽  
S Bodmer

Transforming growth factor-beta (TGF-beta), a regulator of cell growth and differentiation, is secreted by most cultured cells in latent form (L-TGF-beta). Activation of L-TGF-beta can be achieved by various physico-chemical treatments, including acidification, alkalinization, heating and chaotropic agents. Proposed physiological activators include proteinases and glycosidases, which, however, only lead to limited activation (15-20% of the total TGF-beta activity after acidic activation). In the present study L-TGF-beta 1 partially purified from human platelets was not activated by treatment with neuraminidase or the proteinases plasmin, endoproteinase Arg-C, elastase and chymotrypsin. The mechanism of activation of L-TGF-beta was further assessed by using the human glioblastoma cell line 308, which releases biologically active TGF-beta 2. Factor(s) secreted by 308 glioblastoma cells were found to be able to activate partially purified L-TGF-beta 1 from human platelets. Our finding may prove to constitute a physiologically relevant mechanism for the activation of latent forms of TGF-beta in vivo.


1987 ◽  
Vol 105 (2) ◽  
pp. 965-975 ◽  
Author(s):  
L M Wakefield ◽  
D M Smith ◽  
T Masui ◽  
C C Harris ◽  
M B Sporn

Scatchard analyses of the binding of transforming growth factor-beta (TGF-beta) to a wide variety of different cell types in culture revealed the universal presence of high affinity (Kd = 1-60 pM) receptors for TGF-beta on every cell type assayed, indicating a wide potential target range for TGF-beta action. There was a strong (r = +0.85) inverse relationship between the receptor affinity and the number of receptors expressed per cell, such that at low TGF-beta concentrations, essentially all cells bound a similar number of TGF-beta molecules per cell. The binding of TGF-beta to various cell types was not altered by many agents that affect the cellular response to TGF-beta, suggesting that modulation of TGF-beta binding to its receptor may not be a primary control mechanism in TGF-beta action. Similarly, in vitro transformation resulted in only relatively small changes in the cellular binding of TGF-beta, and for those cell types that exhibited ligand-induced down-regulation of the receptor, down-regulation was not extensive. Thus the strong conservation of binding observed between cell types is also seen within a given cell type under a variety of conditions, and receptor expression appears to be essentially constitutive. Finally, the biologically inactive form of TGF-beta, which constitutes greater than 98% of autocrine TGF-beta secreted by all of the twelve different cell types assayed, was shown to be unable to bind to the receptor without prior activation in vitro. It is proposed that this may prevent premature interaction of autocrine ligand and receptor in the Golgi apparatus.


1991 ◽  
Vol 174 (3) ◽  
pp. 539-545 ◽  
Author(s):  
J S Silva ◽  
D R Twardzik ◽  
S G Reed

The effects of transforming growth factor beta (TGF-beta) on interferon gamma-mediated killing of the intracellular protozoan parasite Trypanosoma cruzi and on the course of T. cruzi infection in mice were investigated. Spleen cells from mice with acute T. cruzi infections were found to produce elevated levels of biologically active TGF-beta in vitro, and the possibility that TGF-beta may mediate certain aspects of T. cruzi infection was then addressed. When mouse peritoneal macrophages were treated with TGF-beta in vitro, the ability of IFN-gamma to activate intracellular inhibition of the parasite was blocked. This occurred whether cells were treated with TGF-beta either before or after IFN-gamma treatment. TGF-beta treatment also blocked the T. cruzi-inhibiting effects of IGN-gamma on human macrophages. Additionally, treatment of human macrophages with TGF-beta alone led to increased parasite replication in these cells. The effects of TGF-beta on T. cruzi infection in vivo were then investigated. Susceptible C57BL/6 mice developed higher parasitemias and died earlier when treated with TGF-beta during the course of infection. Resistant C57BL/6 x DBA/2 F1 mice treated with TGF-beta also had increased parasitemias, and 50% mortality, compared with no mortality in infected, saline-treated controls. A single dose of TGF-beta, given at the time of infection, was sufficient to significantly decrease resistance to infection in F1 mice and to exacerbate infection in susceptible C57BL/6 mice. Furthermore, a single injection of TGF-beta was sufficient to counter the in vivo protective effects of IFN-gamma. We conclude that TGF-beta, produced during acute T. cruzi infection in mice, is a potent inhibitor of the effects of macrophage activating cytokines in vivo and in vitro and may play a role in regulating infection.


Sign in / Sign up

Export Citation Format

Share Document