scholarly journals Geometric properties of certain analytic functions associated with generalized fractional integral operators

2014 ◽  
Vol 2014 (1) ◽  
Author(s):  
Yong Chan Kim ◽  
Jae Ho Choi
2019 ◽  
Vol 3 (2) ◽  
pp. 32
Author(s):  
Marcela V. Mihai ◽  
Muhammad Uzair Awan ◽  
Muhammad Aslam Noor ◽  
Tingsong Du ◽  
Artion Kashuri ◽  
...  

In this paper, we introduce and investigate generalized fractional integral operators containing the new generalized Mittag–Leffler function of two variables. We establish several new refinements of Hermite–Hadamard-like inequalities via co-ordinated convex functions.


2013 ◽  
Vol 2013 ◽  
pp. 1-12 ◽  
Author(s):  
Hendra Gunawan ◽  
Denny Ivanal Hakim ◽  
Yoshihiro Sawano ◽  
Idha Sihwaningrum

We prove weak type inequalities for some integral operators, especially generalized fractional integral operators, on generalized Morrey spaces of nonhomogeneous type. The inequality for generalized fractional integral operators is proved by using two different techniques: one uses the Chebyshev inequality and some inequalities involving the modified Hardy-Littlewood maximal operator and the other uses a Hedberg type inequality and weak type inequalities for the modified Hardy-Littlewood maximal operator. Our results generalize the weak type inequalities for fractional integral operators on generalized non-homogeneous Morrey spaces and extend to some singular integral operators. In addition, we also prove the boundedness of generalized fractional integral operators on generalized non-homogeneous Orlicz-Morrey spaces.


2020 ◽  
Vol 2020 ◽  
pp. 1-10 ◽  
Author(s):  
Shuya Guo ◽  
Yu-Ming Chu ◽  
Ghulam Farid ◽  
Sajid Mehmood ◽  
Waqas Nazeer

The aim of this paper is to present the fractional Hadamard and Fejér-Hadamard inequalities for exponentially s,m-convex functions. To establish these inequalities, we will utilize generalized fractional integral operators containing the Mittag-Leffler function in their kernels via a monotone function. The presented results in particular contain a number of fractional Hadamard and Fejér-Hadamard inequalities for s-convex, m-convex, s,m-convex, exponentially convex, exponentially s-convex, and convex functions.


Sign in / Sign up

Export Citation Format

Share Document