MOTIVATION: There exists several massive genomic and metagenomic data collection efforts, including GenomeTrakr and MetaSub, which are routinely updated with new data. To analyze such datasets, memory-efficient methods to construct and store the colored de Bruijn graph have been developed. Yet, a problem that has not been considered is constructing the colored de Bruijn graph in a scalable manner that allows new data to be added without reconstruction. This problem is important for large public datasets as scalability is needed but also the ability to update the construction is also needed. RESULTS: We create a method for constructing and updating the colored de Bruijn graph on a very-large dataset through partitioning the data into smaller subsets, building the colored de Bruijn graph using a FM-index based representation, and succinctly merging these representations to build a single graph. The last step, merging succinctly, is the algorithmic challenge which we solve in this paper. We refer to the resulting method as VariMerge. We validate our approach, and show it produces a three-fold reduction in working space when constructing a colored de Bruijn graph for 8,000 strains. Lastly, we compare VariMerge to other competing methods --- including Vari, Rainbowfish, Mantis, Bloom Filter Trie, the method by Almodaresi(2019) and Multi-BRWT --- and illustrate that VariMerge is the only method that is capable of building the colored de Bruijn graph for 16,000 strains in a manner that allows additional samples to be added. Competing methods either did not scale to this large of a dataset or cannot allow for additions without reconstruction. AVAILABILITY: Our software is available under GPLv3 at https://github.com/cosmo-team/cosmo/tree/VARI-merge.