scholarly journals Stability analysis of a dynamical model of tuberculosis with incomplete treatment

2020 ◽  
Vol 2020 (1) ◽  
Author(s):  
Ihsan Ullah ◽  
Saeed Ahmad ◽  
Qasem Al-Mdallal ◽  
Zareen A. Khan ◽  
Hasib Khan ◽  
...  

Abstract A simple deterministic epidemic model for tuberculosis is addressed in this article. The impact of effective contact rate, treatment rate, and incomplete treatment versus efficient treatment is investigated. We also analyze the asymptotic behavior, spread, and possible eradication of the TB infection. It is observed that the disease transmission dynamics is characterized by the basic reproduction ratio $\Re _{0}$ ℜ 0 ; if $\Re _{0}<1$ ℜ 0 < 1 , there is only a disease-free equilibrium which is both locally and globally asymptotically stable. Moreover, for $\Re _{0}>1$ ℜ 0 > 1 , a unique positive endemic equilibrium exists which is globally asymptotically stable. The global stability of the equilibria is shown via Lyapunov function. It is also obtained that incomplete treatment of TB causes increase in disease infection while efficient treatment results in a reduction in TB. Finally, for the estimated parameters, some numerical simulations are performed to verify the analytical results. These numerical results indicate that decrease in the effective contact rate λ and increase in the treatment rate γ play a significant role in the TB infection control.

MATEMATIKA ◽  
2019 ◽  
Vol 35 (4) ◽  
pp. 149-170
Author(s):  
Afeez Abidemi ◽  
Rohanin Ahmad ◽  
Nur Arina Bazilah Aziz

This study presents a two-strain deterministic model which incorporates Dengvaxia vaccine and insecticide (adulticide) control strategies to forecast the dynamics of transmission and control of dengue in Madeira Island if there is a new outbreak with a different virus serotypes after the first outbreak in 2012. We construct suitable Lyapunov functions to investigate the global stability of the disease-free and boundary equilibrium points. Qualitative analysis of the model which incorporates time-varying controls with the specific goal of minimizing dengue disease transmission and the costs related to the control implementation by employing the optimal control theory is carried out. Three strategies, namely the use of Dengvaxia vaccine only, application of adulticide only, and the combination of Dengvaxia vaccine and adulticide are considered for the controls implementation. The necessary conditions are derived for the optimal control of dengue. We examine the impacts of the control strategies on the dynamics of infected humans and mosquito population by simulating the optimality system. The disease-freeequilibrium is found to be globally asymptotically stable whenever the basic reproduction numbers associated with virus serotypes 1 and j (j 2 {2, 3, 4}), respectively, satisfy R01,R0j 1, and the boundary equilibrium is globally asymptotically stable when the related R0i (i = 1, j) is above one. It is shown that the strategy based on the combination of Dengvaxia vaccine and adulticide helps in an effective control of dengue spread in the Island.


2018 ◽  
Vol 2018 ◽  
pp. 1-12 ◽  
Author(s):  
Abadi Abay Gebremeskel

Mathematical models become an important and popular tools to understand the dynamics of the disease and give an insight to reduce the impact of malaria burden within the community. Thus, this paper aims to apply a mathematical model to study global stability of malaria transmission dynamics model with logistic growth. Analysis of the model applies scaling and sensitivity analysis and sensitivity analysis of the model applied to understand the important parameters in transmission and prevalence of malaria disease. We derive the equilibrium points of the model and investigated their stabilities. The results of our analysis have shown that if R0≤1, then the disease-free equilibrium is globally asymptotically stable, and the disease dies out; if R0>1, then the unique endemic equilibrium point is globally asymptotically stable and the disease persists within the population. Furthermore, numerical simulations in the application of the model showed the abrupt and periodic variations.


2012 ◽  
Vol 05 (03) ◽  
pp. 1260012 ◽  
Author(s):  
RUI XU

In this paper, an HIV-1 infection model with absorption, saturation infection and an intracellular delay accounting for the time between viral entry into a target cell and the production of new virus particles is investigated. By analyzing the characteristic equations, the local stability of an infection-free equilibrium and a chronic-infection equilibrium of the model is established. By using suitable Lyapunov functionals and LaSalle's invariance principle, it is proved that if the basic reproduction ratio is less than unity, the infection-free equilibrium is globally asymptotically stable; and if the basic reproduction ratio is greater than unity, sufficient condition is derived for the global stability of the chronic-infection equilibrium.


2016 ◽  
Vol 10 (01) ◽  
pp. 1750003
Author(s):  
Maoxing Liu ◽  
Lixia Zuo

A three-dimensional compartmental model with media coverage is proposed to describe the real characteristics of its impact in the spread of infectious diseases in a given region. A piecewise continuous transmission rate is introduced to describe that media coverage exhibits its effect only when the number of the infected exceeds a certain critical level. Further, it is assumed that the impact of media coverage on the contact transmission is described by an exponential decreasing factor. Stability analysis of the model shows that the disease-free equilibrium is globally asymptotically stable if the basic reproduction number is less than unity. On the other hand, when the basic reproduction number is greater than unity and media coverage impact is sufficiently small, a unique endemic equilibrium exists, which is globally asymptotically stable.


Author(s):  
Bedreddine AINSEBA ◽  
Tarik Touaoula ◽  
Zakia Sari

In this paper, an age structured epidemic Susceptible-Infected-Quarantined-Recovered-Infected (SIQRI) model is proposed, where we will focus on the role of individuals that leave their class of quarantine before being completely recovered and thus will participate again to the transmission of the disease. We investigate the asymptotic behavior of solutions by studying the stability of both trivial and positive equilibria. In order to see the impact of the different model parameters like the relapse rate on the qualitative behavior of our system, we firstly, give the explicit expression of the epidemic reproduction number $R_{0}.$ This number is a combination of the classical epidemic reproduction number for the SIQR model and a new epidemic reproduction number corresponding to the individuals infected by a relapsed person from the R-class. It is shown that, if $R_{0}\leq 1$, the disease free equilibrium is globally asymptotically stable and becomes unstable for $R_{0}>1$. Secondly, while $R_{0}>1$, a suitable Lyapunov functional is constructed to prove that the unique endemic equilibrium is globally asymptotically stable on some subset $\Omega_{0}.$


2012 ◽  
Vol 05 (03) ◽  
pp. 1260011 ◽  
Author(s):  
WEI-WEI SHI ◽  
YUAN-SHUN TAN

We develop an influenza pandemic model with quarantine and treatment, and analyze the dynamics of the model. Analytical results of the model show that, if basic reproduction number [Formula: see text], the disease-free equilibrium (DFE) is globally asymptotically stable, if [Formula: see text], the disease is uniformly persistent. The model is then extended to assess the impact of three anti-influenza control measures, precaution, quarantine and treatment, by re-formulating the model as an optimal control problem. We focus primarily on controlling disease with a possible minimal the systemic cost. Pontryagin's maximum principle is used to characterize the optimal levels of the three controls. Numerical simulations of the optimality system, using a set of reasonable parameter values, indicate that the precaution measure is more effective in reducing disease transmission than the other two control measures. The precaution measure should be emphasized.


2013 ◽  
Vol 06 (05) ◽  
pp. 1350029 ◽  
Author(s):  
XINZHU MENG ◽  
ZHITAO WU ◽  
TONGQIAN ZHANG

Based on an epidemic model which Manvendra and Vinay [Mathematical model to simulate infections disease, VSRD-TNTJ3(2) (2012) 60–68] have proposed, we consider the dynamics and therapeutic strategy of a SEIS epidemic model with latent patients and active patients. First, the basic reproduction number is established by applying the method of the next generation matrix. By means of appropriate Lyapunov functions, it is proven that while the basic reproduction number 0 < R0 < 1, the disease-free equilibrium is globally asymptotically stable and the disease eliminates; and if the basic reproduction number R0 > 1, the endemic equilibrium is globally asymptotically stable and therefore the disease becomes endemic. Numerical investigations of their basin of attraction indicate that the locally stable equilibria are global attractors. Second, we consider the impact of treatment on epidemic disease and analytically determine the most effective therapeutic strategy. We conclude that the most effective therapeutic strategy consists of treating both the exposed and the infectious, while treating only the exposed is the least effective therapeutic strategy. Finally, numerical simulations are given to illustrate the effectiveness of the proposed results.


2012 ◽  
Vol 22 (03) ◽  
pp. 1250062 ◽  
Author(s):  
PEI YU ◽  
XINGFU ZOU

This paper is a continuation of our previous work on an HIV-1 therapy model of fighting a virus with another virus [Jiang et al., 2009]. The work in [Jiang et al., 2009] investigated cascading bifurcations between equilibrium solutions, as well as Hopf bifurcation from a double-infected equilibrium solution. In this paper, we propose a modification of the model in [Revilla & Garcia-Ramos, 2003; Jiang et al., 2009] by adding a constant η to the recombinant virus equation, which accounts for the treatment of constant injection of recombinants. We study the dynamics of the new model and find that η plays an important role in the therapy. Unlike the previous model without injection of recombinant, which has three equilibrium solutions, this new model can only allow two biologically meaningful equilibrium solutions. It is shown that there is [Formula: see text] depending on η, such that the HIV free equilibrium solution [Formula: see text] is globally asymptotically stable when the basic reproduction ratio, [Formula: see text]; [Formula: see text] becomes unstable when [Formula: see text]. In the latter case, there occurs the double-infection equilibrium solution, [Formula: see text], which is stable when [Formula: see text] for some [Formula: see text] larger than [Formula: see text], and loses its stability when [Formula: see text] passes the critical value [Formula: see text] and bifurcates into a family of limit cycles through Hopf bifurcation. Our results show that appropriate injection rate can help eliminate the HIV virus in the sense that the HIV free equilibrium can be made globally asymptotically stable by choosing η > 0 sufficiently large. This is in contrast to the conclusion for the case with η = 0 in which, the recombinants do not help eliminate the HIV virus but only help reduce the HIV load in the long term sense.


2011 ◽  
Vol 2011 ◽  
pp. 1-13 ◽  
Author(s):  
Yunfei Li ◽  
Rui Xu ◽  
Zhe Li ◽  
Shuxue Mao

A delayed HIV-1 infection model with CTL immune response is investigated. By using suitable Lyapunov functionals, it is proved that the infection-free equilibrium is globally asymptotically stable if the basic reproduction ratio for viral infection is less than or equal to unity; if the basic reproduction ratio for CTL immune response is less than or equal to unity and the basic reproduction ratio for viral infection is greater than unity, the CTL-inactivated infection equilibrium is globally asymptotically stable; if the basic reproduction ratio for CTL immune response is greater than unity, the CTL-activated infection equilibrium is globally asymptotically stable.


2021 ◽  
Vol 26 (1) ◽  
pp. 1-20
Author(s):  
Chenwei Song ◽  
Rui Xu

In this paper, we consider an improved Human T-lymphotropic virus type I (HTLV-I) infection model with the mitosis of CD4+ T cells and delayed cytotoxic T-lymphocyte (CTL) immune response by analyzing the distributions of roots of the corresponding characteristic equations, the local stability of the infection-free equilibrium, the immunity-inactivated equilibrium, and the immunity-activated equilibrium when the CTL immune delay is zero is established. And we discuss the existence of Hopf bifurcation at the immunity-activated equilibrium. We define the immune-inactivated reproduction ratio R0 and the immune-activated reproduction ratio R1. By using Lyapunov functionals and LaSalle’s invariance principle, it is shown that if R0 < 1, the infection-free equilibrium is globally asymptotically stable; if R1 < 1 < R0, the immunity-inactivated equilibrium is globally asymptotically stable; if R1 > 1, the immunity-activated equilibrium is globally asymptotically stable when the CTL immune delay is zero. Besides, uniform persistence is obtained when R1 > 1. Numerical simulations are carried out to illustrate the theoretical results.


Sign in / Sign up

Export Citation Format

Share Document