scholarly journals Spatio-temporal silhouette sequence reconstruction for gait recognition against occlusion

Author(s):  
Md. Zasim Uddin ◽  
Daigo Muramatsu ◽  
Noriko Takemura ◽  
Md. Atiqur Rahman Ahad ◽  
Yasushi Yagi

AbstractGait-based features provide the potential for a subject to be recognized even from a low-resolution image sequence, and they can be captured at a distance without the subject’s cooperation. Person recognition using gait-based features (gait recognition) is a promising real-life application. However, several body parts of the subjects are often occluded because of beams, pillars, cars and trees, or another walking person. Therefore, gait-based features are not applicable to approaches that require an unoccluded gait image sequence. Occlusion handling is a challenging but important issue for gait recognition. In this paper, we propose silhouette sequence reconstruction from an occluded sequence (sVideo) based on a conditional deep generative adversarial network (GAN). From the reconstructed sequence, we estimate the gait cycle and extract the gait features from a one gait cycle image sequence. To regularize the training of the proposed generative network, we use adversarial loss based on triplet hinge loss incorporating Wasserstein GAN (WGAN-hinge). To the best of our knowledge, WGAN-hinge is the first adversarial loss that supervises the generator network during training by incorporating pairwise similarity ranking information. The proposed approach was evaluated on multiple challenging occlusion patterns. The experimental results demonstrate that the proposed approach outperforms the existing state-of-the-art benchmarks.

2021 ◽  
Vol 12 (6) ◽  
pp. 1-20
Author(s):  
Fayaz Ali Dharejo ◽  
Farah Deeba ◽  
Yuanchun Zhou ◽  
Bhagwan Das ◽  
Munsif Ali Jatoi ◽  
...  

Single Image Super-resolution (SISR) produces high-resolution images with fine spatial resolutions from a remotely sensed image with low spatial resolution. Recently, deep learning and generative adversarial networks (GANs) have made breakthroughs for the challenging task of single image super-resolution (SISR) . However, the generated image still suffers from undesirable artifacts such as the absence of texture-feature representation and high-frequency information. We propose a frequency domain-based spatio-temporal remote sensing single image super-resolution technique to reconstruct the HR image combined with generative adversarial networks (GANs) on various frequency bands (TWIST-GAN). We have introduced a new method incorporating Wavelet Transform (WT) characteristics and transferred generative adversarial network. The LR image has been split into various frequency bands by using the WT, whereas the transfer generative adversarial network predicts high-frequency components via a proposed architecture. Finally, the inverse transfer of wavelets produces a reconstructed image with super-resolution. The model is first trained on an external DIV2 K dataset and validated with the UC Merced Landsat remote sensing dataset and Set14 with each image size of 256 × 256. Following that, transferred GANs are used to process spatio-temporal remote sensing images in order to minimize computation cost differences and improve texture information. The findings are compared qualitatively and qualitatively with the current state-of-art approaches. In addition, we saved about 43% of the GPU memory during training and accelerated the execution of our simplified version by eliminating batch normalization layers.


Author(s):  
Min Yang ◽  
Qiang Qu ◽  
Wenting Tu ◽  
Ying Shen ◽  
Zhou Zhao ◽  
...  

The recent artificial intelligence studies have witnessed great interest in abstractive text summarization. Although remarkable progress has been made by deep neural network based methods, generating plausible and high-quality abstractive summaries remains a challenging task. The human-like reading strategy is rarely explored in abstractive text summarization, which however is able to improve the effectiveness of the summarization by considering the process of reading comprehension and logical thinking. Motivated by the humanlike reading strategy that follows a hierarchical routine, we propose a novel Hybrid learning model for Abstractive Text Summarization (HATS). The model consists of three major components, a knowledge-based attention network, a multitask encoder-decoder network, and a generative adversarial network, which are consistent with the different stages of the human-like reading strategy. To verify the effectiveness of HATS, we conduct extensive experiments on two real-life datasets, CNN/Daily Mail and Gigaword datasets. The experimental results demonstrate that HATS achieves impressive results on both datasets.


2018 ◽  
Vol 14 (1) ◽  
pp. 22-29
Author(s):  
Fatimah Abdulsattar

Gait as a biometric can be used to identify subjects at a distance and thus it receives great attention from the research community for security and surveillance applications. One of the challenges that affects gait recognition performance is view variation. Much work has been done to tackle this challenge. However, the majority of the work assumes that gait silhouettes are captured by affine cameras where only the height of silhouettes changes and the difference in viewing angle of silhouettes in one gait cycle is relatively small. In this paper, we analyze the variation in gait recognition performance when using silhouettes from projective cameras and from affine cameras with different distance from the center of a walking path. This is done by using 3D models of walking people in the gallery set and 2D gait silhouettes from independent (single) cameras in the probe set. Different factors that affect matching 3D human models with 2D gait silhouettes from single cameras for view-independent gait recognition are analyzed. In all experiments, we use 258 multi-view sequences belong to 46 subjects from Multi-View Soton gait dataset. We evaluate the matching performance for 12 different views using Gait Energy Image (GEI) as gait features. Then, we analyze the effect of using different camera configurations for 3D model reconstruction, the GEI from cameras with different settings, the upper and lower body parts for recognition and different GEI resolutions. The results illustrate that low recognition performance is achieved when using gait silhouettes from affine cameras while lower recognition performance is obtained when using gait silhouettes from projective cameras.


2019 ◽  
Vol 46 ◽  
pp. 307-319 ◽  
Author(s):  
Ngoc-Dung T. Tieu ◽  
Huy H. Nguyen ◽  
Hoang-Quoc Nguyen-Son ◽  
Junichi Yamagishi ◽  
Isao Echizen

2021 ◽  
Vol 13 (4) ◽  
pp. 548
Author(s):  
Xiaokang Zhang ◽  
Man-On Pun ◽  
Ming Liu

Using remote sensing techniques to monitor landslides and their resultant land cover changes is fundamentally important for risk assessment and hazard prevention. Despite enormous efforts in developing intelligent landslide mapping (LM) approaches, LM remains challenging owing to high spectral heterogeneity of very-high-resolution (VHR) images and the daunting labeling efforts. To this end, a deep learning model based on semi-supervised multi-temporal deep representation fusion network, namely SMDRF-Net, is proposed for reliable and efficient LM. In comparison with previous methods, the SMDRF-Net possesses three distinct properties. (1) Unsupervised deep representation learning at the pixel- and object-level is performed by transfer learning using the Wasserstein generative adversarial network with gradient penalty to learn discriminative deep features and retain precise outlines of landslide objects in the high-level feature space. (2) Attention-based adaptive fusion of multi-temporal and multi-level deep representations is developed to exploit the spatio-temporal dependencies of deep representations and enhance the feature representation capability of the network. (3) The network is optimized using limited samples with pseudo-labels that are automatically generated based on a comprehensive uncertainty index. Experimental results from the analysis of VHR aerial orthophotos demonstrate the reliability and robustness of the proposed approach for LM in comparison with state-of-the-art methods.


2021 ◽  
Vol 2021 ◽  
pp. 1-12
Author(s):  
Wafaa Adnan Alsaggaf ◽  
Irfan Mehmood ◽  
Enas Fawai Khairullah ◽  
Samar Alhuraiji ◽  
Maha Farouk S. Sabir ◽  
...  

Surveillance remains an important research area, and it has many applications. Smart surveillance requires a high level of accuracy even when persons are uncooperative. Gait Recognition is the study of recognizing people by the way they walk even when they are unwilling to cooperate. It is another form of a behavioral biometric system in which unique attributes of an individual’s gait are analyzed to determine their identity. On the other hand, one of the big limitations of the gait recognition system is uncooperative environments in which both gallery and probe sets are made under different and unknown walking conditions. In order to tackle this problem, we propose a deep learning-based method that is trained on individuals with the normal walking condition, and to deal with an uncooperative environment and recognize the individual with any dynamic walking conditions, a cycle consistent generative adversarial network is used. This method translates a GEI disturbed from different covariate factors to a normal GEI. It works like unsupervised learning, and during its training, a GEI disrupts from different covariate factors of each individual and acts as a source domain while the normal walking conditions of individuals are our target domain to which translation is required. The cycle consistent GANs automatically find an individual pair with the help of the Cycle Loss function and generate the required GEI, which is tested by the CNN model to predict the person ID. The proposed system is evaluated over a publicly available data set named CASIA-B, and it achieved excellent results. Moreover, this system can be implemented in sensitive areas, like banks, seminar halls (events), airports, embassies, shopping malls, police stations, military areas, and other public service areas for security purposes.


Sign in / Sign up

Export Citation Format

Share Document