scholarly journals Diagnostic performance of machine learning applied to texture analysis-derived features for breast lesion characterisation at automated breast ultrasound: a pilot study

2019 ◽  
Vol 3 (1) ◽  
Author(s):  
Magda Marcon ◽  
Alexander Ciritsis ◽  
Cristina Rossi ◽  
Anton S. Becker ◽  
Nicole Berger ◽  
...  

Abstract Background Our aims were to determine if features derived from texture analysis (TA) can distinguish normal, benign, and malignant tissue on automated breast ultrasound (ABUS); to evaluate whether machine learning (ML) applied to TA can categorise ABUS findings; and to compare ML to the analysis of single texture features for lesion classification. Methods This ethically approved retrospective pilot study included 54 women with benign (n = 38) and malignant (n = 32) solid breast lesions who underwent ABUS. After manual region of interest placement along the lesions’ margin as well as the surrounding fat and glandular breast tissue, 47 texture features (TFs) were calculated for each category. Statistical analysis (ANOVA) and a support vector machine (SVM) algorithm were applied to the texture feature to evaluate the accuracy in distinguishing (i) lesions versus normal tissue and (ii) benign versus malignant lesions. Results Skewness and kurtosis were the only TF significantly different among all the four categories (p < 0.000001). In subsets (i) and (ii), a maximum area under the curve of 0.86 (95% confidence interval [CI] 0.82–0.88) for energy and 0.86 (95% CI 0.82–0.89) for entropy were obtained. Using the SVM algorithm, a maximum area under the curve of 0.98 for both subsets was obtained with a maximum accuracy of 94.4% in subset (i) and 90.7% in subset (ii). Conclusions TA in combination with ML might represent a useful diagnostic tool in the evaluation of breast imaging findings in ABUS. Applying ML techniques to TFs might be superior compared to the analysis of single TF.

2021 ◽  
Vol 10 (5) ◽  
pp. 992
Author(s):  
Martina Barchitta ◽  
Andrea Maugeri ◽  
Giuliana Favara ◽  
Paolo Marco Riela ◽  
Giovanni Gallo ◽  
...  

Patients in intensive care units (ICUs) were at higher risk of worsen prognosis and mortality. Here, we aimed to evaluate the ability of the Simplified Acute Physiology Score (SAPS II) to predict the risk of 7-day mortality, and to test a machine learning algorithm which combines the SAPS II with additional patients’ characteristics at ICU admission. We used data from the “Italian Nosocomial Infections Surveillance in Intensive Care Units” network. Support Vector Machines (SVM) algorithm was used to classify 3782 patients according to sex, patient’s origin, type of ICU admission, non-surgical treatment for acute coronary disease, surgical intervention, SAPS II, presence of invasive devices, trauma, impaired immunity, antibiotic therapy and onset of HAI. The accuracy of SAPS II for predicting patients who died from those who did not was 69.3%, with an Area Under the Curve (AUC) of 0.678. Using the SVM algorithm, instead, we achieved an accuracy of 83.5% and AUC of 0.896. Notably, SAPS II was the variable that weighted more on the model and its removal resulted in an AUC of 0.653 and an accuracy of 68.4%. Overall, these findings suggest the present SVM model as a useful tool to early predict patients at higher risk of death at ICU admission.


2020 ◽  
Vol 20 (S14) ◽  
Author(s):  
Sadiq Alinsaif ◽  
Jochen Lang

Abstract Background A various number of imaging modalities are available (e.g., magnetic resonance, x-ray, ultrasound, and biopsy) where each modality can reveal different structural aspects of tissues. However, the analysis of histological slide images that are captured using a biopsy is considered the gold standard to determine whether cancer exists. Furthermore, it can reveal the stage of cancer. Therefore, supervised machine learning can be used to classify histopathological tissues. Several computational techniques have been proposed to study histopathological images with varying levels of success. Often handcrafted techniques based on texture analysis are proposed to classify histopathological tissues which can be used with supervised machine learning. Methods In this paper, we construct a novel feature space to automate the classification of tissues in histology images. Our feature representation is to integrate various features sets into a new texture feature representation. All of our descriptors are computed in the complex Shearlet domain. With complex coefficients, we investigate not only the use of magnitude coefficients, but also study the effectiveness of incorporating the relative phase (RP) coefficients to create the input feature vector. In our study, four texture-based descriptors are extracted from the Shearlet coefficients: co-occurrence texture features, Local Binary Patterns, Local Oriented Statistic Information Booster, and segmentation-based Fractal Texture Analysis. Each set of these attributes captures significant local and global statistics. Therefore, we study them individually, but additionally integrate them to boost the accuracy of classifying the histopathology tissues while being fed to classical classifiers. To tackle the problem of high-dimensionality, our proposed feature space is reduced using principal component analysis. In our study, we use two classifiers to indicate the success of our proposed feature representation: Support Vector Machine (SVM) and Decision Tree Bagger (DTB). Results Our feature representation delivered high performance when used on four public datasets. As such, the best achieved accuracy: multi-class Kather (i.e., 92.56%), BreakHis (i.e., 91.73%), Epistroma (i.e., 98.04%), Warwick-QU (i.e., 96.29%). Conclusions Our proposed method in the Shearlet domain for the classification of histopathological images proved to be effective when it was investigated on four different datasets that exhibit different levels of complexity.


2019 ◽  
Vol 45 (10) ◽  
pp. 3193-3201 ◽  
Author(s):  
Yajuan Li ◽  
Xialing Huang ◽  
Yuwei Xia ◽  
Liling Long

Abstract Purpose To explore the value of CT-enhanced quantitative features combined with machine learning for differential diagnosis of renal chromophobe cell carcinoma (chRCC) and renal oncocytoma (RO). Methods Sixty-one cases of renal tumors (chRCC = 44; RO = 17) that were pathologically confirmed at our hospital between 2008 and 2018 were retrospectively analyzed. All patients had undergone preoperative enhanced CT scans including the corticomedullary (CMP), nephrographic (NP), and excretory phases (EP) of contrast enhancement. Volumes of interest (VOIs), including lesions on the images, were manually delineated using the RadCloud platform. A LASSO regression algorithm was used to screen the image features extracted from all VOIs. Five machine learning classifications were trained to distinguish chRCC from RO by using a fivefold cross-validation strategy. The performance of the classifier was mainly evaluated by areas under the receiver operating characteristic (ROC) curve and accuracy. Results In total, 1029 features were extracted from CMP, NP, and EP. The LASSO regression algorithm was used to screen out the four, four, and six best features, respectively, and eight features were selected when CMP and NP were combined. All five classifiers had good diagnostic performance, with area under the curve (AUC) values greater than 0.850, and support vector machine (SVM) classifier showed a diagnostic accuracy of 0.945 (AUC 0.964 ± 0.054; sensitivity 0.999; specificity 0.800), showing the best performance. Conclusions Accurate preoperative differential diagnosis of chRCC and RO can be facilitated by a combination of CT-enhanced quantitative features and machine learning.


2020 ◽  
Vol 43 (1) ◽  
pp. 29-45
Author(s):  
Alex Noel Joseph Raj ◽  
Ruban Nersisson ◽  
Vijayalakshmi G. V. Mahesh ◽  
Zhemin Zhuang

Nipple is a vital landmark in the breast lesion diagnosis. Although there are advanced computer-aided detection (CADe) systems for nipple detection in breast mediolateral oblique (MLO) views of mammogram images, few academic works address the coronal views of breast ultrasound (BUS) images. This paper addresses a novel CADe system to locate the Nipple Shadow Area (NSA) in ultrasound images. Here the Hu Moments and Gray-level Co-occurrence Matrix (GLCM) were calculated through an iterative sliding window for the extraction of shape and texture features. These features are then concatenated and fed into an Artificial Neural Network (ANN) to obtain probable NSA’s. Later, contour features, such as shape complexity through fractal dimension, edge distance from the periphery and contour area, were computed and passed into a Support Vector Machine (SVM) to identify the accurate NSA in each case. The coronal plane BUS dataset is built upon our own, which consists of 64 images from 13 patients. The test results show that the proposed CADe system achieves 91.99% accuracy, 97.55% specificity, 82.46% sensitivity and 88% F-score on our dataset.


2020 ◽  
Author(s):  
Vincent Bremer ◽  
Philip I Chow ◽  
Burkhardt Funk ◽  
Frances P Thorndike ◽  
Lee M Ritterband

BACKGROUND User dropout is a widespread concern in the delivery and evaluation of digital (ie, web and mobile apps) health interventions. Researchers have yet to fully realize the potential of the large amount of data generated by these technology-based programs. Of particular interest is the ability to predict who will drop out of an intervention. This may be possible through the analysis of user journey data—self-reported as well as system-generated data—produced by the path (or journey) an individual takes to navigate through a digital health intervention. OBJECTIVE The purpose of this study is to provide a step-by-step process for the analysis of user journey data and eventually to predict dropout in the context of digital health interventions. The process is applied to data from an internet-based intervention for insomnia as a way to illustrate its use. The completion of the program is contingent upon completing 7 sequential cores, which include an initial tutorial core. Dropout is defined as not completing the seventh core. METHODS Steps of user journey analysis, including data transformation, feature engineering, and statistical model analysis and evaluation, are presented. Dropouts were predicted based on data from 151 participants from a fully automated web-based program (Sleep Healthy Using the Internet) that delivers cognitive behavioral therapy for insomnia. Logistic regression with L1 and L2 regularization, support vector machines, and boosted decision trees were used and evaluated based on their predictive performance. Relevant features from the data are reported that predict user dropout. RESULTS Accuracy of predicting dropout (area under the curve [AUC] values) varied depending on the program core and the machine learning technique. After model evaluation, boosted decision trees achieved AUC values ranging between 0.6 and 0.9. Additional handcrafted features, including time to complete certain steps of the intervention, time to get out of bed, and days since the last interaction with the system, contributed to the prediction performance. CONCLUSIONS The results support the feasibility and potential of analyzing user journey data to predict dropout. Theory-driven handcrafted features increased the prediction performance. The ability to predict dropout at an individual level could be used to enhance decision making for researchers and clinicians as well as inform dynamic intervention regimens.


Diagnostics ◽  
2021 ◽  
Vol 11 (10) ◽  
pp. 1784
Author(s):  
Shih-Chieh Chang ◽  
Chan-Lin Chu ◽  
Chih-Kuang Chen ◽  
Hsiang-Ning Chang ◽  
Alice M. K. Wong ◽  
...  

Prediction of post-stroke functional outcomes is crucial for allocating medical resources. In this study, a total of 577 patients were enrolled in the Post-Acute Care-Cerebrovascular Disease (PAC-CVD) program, and 77 predictors were collected at admission. The outcome was whether a patient could achieve a Barthel Index (BI) score of >60 upon discharge. Eight machine-learning (ML) methods were applied, and their results were integrated by stacking method. The area under the curve (AUC) of the eight ML models ranged from 0.83 to 0.887, with random forest, stacking, logistic regression, and support vector machine demonstrating superior performance. The feature importance analysis indicated that the initial Berg Balance Test (BBS-I), initial BI (BI-I), and initial Concise Chinese Aphasia Test (CCAT-I) were the top three predictors of BI scores at discharge. The partial dependence plot (PDP) and individual conditional expectation (ICE) plot indicated that the predictors’ ability to predict outcomes was the most pronounced within a specific value range (e.g., BBS-I < 40 and BI-I < 60). BI at discharge could be predicted by information collected at admission with the aid of various ML models, and the PDP and ICE plots indicated that the predictors could predict outcomes at a certain value range.


Author(s):  
Jian Yi

The stability of the economic market is an important factor for the rapid development of the economy, especially for the listed companies, whose financial and economic stability affects the stability of the financial market. It is helpful for the healthy development of enterprises and financial markets to make an accurate early warning of the financial economy of listed enterprises. This paper briefly introduced the support vector machine (SVM) and back-propagation neural network (BPNN) algorithms in the machine learning method. To make up for the defects of the two algorithms, they were combined and applied to the enterprise financial economics early warning. A simulation experiment was carried out on the single SVM algorithm-based, single BPNN algorithm-based, and SVM algorithm and BPNN algorithm combined model with the MATLAB software. The results show that the SVM algorithm and BP algorithm combined model converges faster and has higher precision and recall rate and larger area under the curve (AUC) than the single SVM algorithm-based model and the single BPNN algorithm-based model.


2020 ◽  
Vol 9 (2) ◽  
pp. 343 ◽  
Author(s):  
Arash Kia ◽  
Prem Timsina ◽  
Himanshu N. Joshi ◽  
Eyal Klang ◽  
Rohit R. Gupta ◽  
...  

Early detection of patients at risk for clinical deterioration is crucial for timely intervention. Traditional detection systems rely on a limited set of variables and are unable to predict the time of decline. We describe a machine learning model called MEWS++ that enables the identification of patients at risk of escalation of care or death six hours prior to the event. A retrospective single-center cohort study was conducted from July 2011 to July 2017 of adult (age > 18) inpatients excluding psychiatric, parturient, and hospice patients. Three machine learning models were trained and tested: random forest (RF), linear support vector machine, and logistic regression. We compared the models’ performance to the traditional Modified Early Warning Score (MEWS) using sensitivity, specificity, and Area Under the Curve for Receiver Operating Characteristic (AUC-ROC) and Precision-Recall curves (AUC-PR). The primary outcome was escalation of care from a floor bed to an intensive care or step-down unit, or death, within 6 h. A total of 96,645 patients with 157,984 hospital encounters and 244,343 bed movements were included. Overall rate of escalation or death was 3.4%. The RF model had the best performance with sensitivity 81.6%, specificity 75.5%, AUC-ROC of 0.85, and AUC-PR of 0.37. Compared to traditional MEWS, sensitivity increased 37%, specificity increased 11%, and AUC-ROC increased 14%. This study found that using machine learning and readily available clinical data, clinical deterioration or death can be predicted 6 h prior to the event. The model we developed can warn of patient deterioration hours before the event, thus helping make timely clinical decisions.


2019 ◽  
Vol 26 (3) ◽  
pp. 1810-1826 ◽  
Author(s):  
Behnaz Raef ◽  
Masoud Maleki ◽  
Reza Ferdousi

The aim of this study is to develop a computational prediction model for implantation outcome after an embryo transfer cycle. In this study, information of 500 patients and 1360 transferred embryos, including cleavage and blastocyst stages and fresh or frozen embryos, from April 2016 to February 2018, were collected. The dataset containing 82 attributes and a target label (indicating positive and negative implantation outcomes) was constructed. Six dominant machine learning approaches were examined based on their performance to predict embryo transfer outcomes. Also, feature selection procedures were used to identify effective predictive factors and recruited to determine the optimum number of features based on classifiers performance. The results revealed that random forest was the best classifier (accuracy = 90.40% and area under the curve = 93.74%) with optimum features based on a 10-fold cross-validation test. According to the Support Vector Machine-Feature Selection algorithm, the ideal numbers of features are 78. Follicle stimulating hormone/human menopausal gonadotropin dosage for ovarian stimulation was the most important predictive factor across all examined embryo transfer features. The proposed machine learning-based prediction model could predict embryo transfer outcome and implantation of embryos with high accuracy, before the start of an embryo transfer cycle.


Sign in / Sign up

Export Citation Format

Share Document