A two‐layer stacking procedure to enhance converted waves

Geophysics ◽  
1993 ◽  
Vol 58 (7) ◽  
pp. 997-1001 ◽  
Author(s):  
B. L. N. Kennett

For marine seismic sources quite efficient conversion of P‐waves to S‐waves can occur at hard seafloors, e.g., carbonate horizons in tropical waters. The S‐waves are reflected back from structures at depth and are reconverted to P‐waves in the water before detection by the receiver array. Such PSSP reflections can carry useful information on the structure beneath the sea bed but are most significant at large offsets and so are not easily stacked with a conventional normal moveout (NMO) procedure based on a hyperbolic time trajectory. A two‐layer stacking procedure that separates the water layer from the region below the seafloor provides a very effective means of extracting the PSSP arrivals, but also works well for P‐waves. There is no direct analytic form for the stacking trajectories but they can be calculated quite efficiently numerically. A further advantage is that the stacking velocity for S‐waves in the lower layer can be interpreted directly in terms of S‐wave propagation, so that S‐wave interval velocities can be found. Stacking procedures based on such simple physical models are likely to be useful in other cases where attention needs to be focused on a particular aspect of the wavefield.

Geophysics ◽  
2016 ◽  
Vol 81 (3) ◽  
pp. D283-D291 ◽  
Author(s):  
Peng Liu ◽  
Wenxiao Qiao ◽  
Xiaohua Che ◽  
Xiaodong Ju ◽  
Junqiang Lu ◽  
...  

We have developed a new 3D acoustic logging tool (3DAC). To examine the azimuthal resolution of 3DAC, we have evaluated a 3D finite-difference time-domain model to simulate a case in which the borehole penetrated a rock formation boundary when the tool worked at the azimuthal-transmitting-azimuthal-receiving mode. The results indicated that there were two types of P-waves with different slowness in waveforms: the P-wave of the harder rock (P1) and the P-wave of the softer rock (P2). The P1-wave can be observed in each azimuthal receiver, but the P2-wave appears only in the azimuthal receivers toward the softer rock. When these two types of rock are both fast formations, two types of S-waves also exist, and they have better azimuthal sensitivity compared with P-waves. The S-wave of the harder rock (S1) appears only in receivers toward the harder rock, and the S-wave of the softer rock (S2) appears only in receivers toward the softer rock. A model was simulated in which the boundary between shale and sand penetrated the borehole but not the borehole axis. The P-wave of shale and the S-wave of sand are azimuthally sensitive to the azimuth angle variation of two formations. In addition, waveforms obtained from 3DAC working at the monopole-transmitting-azimuthal-receiving mode indicate that the corresponding P-waves and S-waves are azimuthally sensitive, too. Finally, we have developed a field example of 3DAC to support our simulation results: The azimuthal variation of the P-wave slowness was observed and can thus be used to reflect the azimuthal heterogeneity of formations.


2017 ◽  
Vol 22 (4) ◽  
pp. 427-434
Author(s):  
Julius K. von Ketelhodt ◽  
Thomas Fechner ◽  
Musa S. D. Manzi ◽  
Raymond J. Durrheim

An integrated P- and S-wave cross-borehole tomographic survey was performed in the city center of Kuala Lumpur, Malaysia, with the aim of exploring a karstic limestone area near an area that previously encountered cavities. Horizontally polarized shear waves were generated with two opposing, perpendicular strike directions and recorded with a multi-level, three-component receiver array. This allowed a high quality picking of the traveltimes, whereby the wave train reverses at the time of the S-wave arrival. In addition, high quality sparker generated P-waves were recorded. The P- and S-wave traveltimes were used to invert for two co-located tomograms. These tomograms enabled a better interpretation capability than a P- or S-wave tomogram on its own. The tomograms enabled the calculation of the elastic parameters, i.e., P- to S-wave velocity (Vp/Vs) ratio, Poisson's ratio, bulk modulus, Young's modulus and the shear modulus, on a 2D surface between the boreholes. This further aided the interpretation, as areas with limited traveltime accuracy and thus, an increase in tomographic error, could be easily identified, and the extent of a large cavity could be estimated. The interpretation of the tomograms was constrained by two additional boreholes, which provided more confidence on the delineation and location of cavities at depths. The survey shows the benefit of co-locating P- and S-wave tomography surveys.


2020 ◽  
Vol 221 (2) ◽  
pp. 1029-1042 ◽  
Author(s):  
Hiroo Kanamori ◽  
Zachary E Ross ◽  
Luis Rivera

SUMMARY We use KiK-net (NIED) downhole records to estimate the radiated energy, ER, of 29 Japanese inland earthquakes with a magnitude range from Mw = 5.6 to 7.0. The method is based on the work of Gutenberg and Richter in which the time integral of S-wave ground-motion velocity-squared is measured as a basic metric of the radiated energy. Only stations within a distance of 100 km are used to minimize complex path and attenuation effects. Unlike the teleseismic method that uses mainly P waves, the use of S waves which carry more than 95 per cent of the radiated energy allows us to obtain robust results. We calibrate the method using synthetic seismograms to modernize and improve the Gutenberg–Richter method. We compute synthetic seismograms for a source model of each event with a given source function (i.e. known ER), the actual mechanism and the source-station geometry. Then, we compare the given ER with the computed energy metric to correct for the unknown effect of wave propagation and the mechanism. The use of downhole records minimizes the uncertainty resulting from the site response. Our results suggest that the currently available estimates of ER from teleseismic data are probably within a factor of 3, on average, of the absolute value. The scaled energy eR ( = ER/M0) is nearly constant at about 3 × 10−5 over a magnitude range from Mw = 5.6 to 7.0 with a slight increasing trend with Mw. We found no significant difference in eR between dip-slip and strike-slip events.


Geophysics ◽  
1999 ◽  
Vol 64 (6) ◽  
pp. 1816-1827 ◽  
Author(s):  
Guochun Lu ◽  
Bjørn Ursin ◽  
Jan Lutro

We have developed a procedure to attenuate water‐layer multiple reflections. We estimate the sea‐bottom reflectivity function and use it plus calculated amplitude functions to model all order water‐layer multiple reflections, taking into account both amplitude and waveform shape. We model the primary and multiple reflections from the sea bottom in the frequency‐slowness domain. The amplitude function in the data modeling includes the source directivity function, source ghost response, receiver array directivity function, receiver ghost response, and offset‐dependent geometrical spreading. For small offsets we can assume that the seabed reflectivity depends only on frequency, and it is estimated using a least‐squares algorithm. An unknown scaling constant in the data is estimated using the amplitude of the primary and first multiple reflection from the sea bed. The composite sea‐bottom reflectivity is estimated as a function of frequency for each common midpoint (CMP) position. We apply the algorithm to high‐resolution seismic data from the North Sea. The modelled data match the recorded data well, and the estimated primary reflectivity is more geologically meaningful than the stacked trace. By comparison with Radon transform multiple removal applied to the same data, the model‐based method was more computationally efficient and left less residual multiple energy.


Geophysics ◽  
2009 ◽  
Vol 74 (4) ◽  
pp. R49-R57 ◽  
Author(s):  
J. Germán Rubino ◽  
Danilo Velis

Prestack seismic data has been used in a new method to fully determine thin-bed properties, including the estimation of its thickness, P- and S-wave velocities, and density. The approach requires neither phase information nor normal-moveout (NMO) corrections, and assumes that the prestack seismic response of the thin layer can be isolated using an offset-dependent time window. We obtained the amplitude-versus-angle (AVA) response of the thin bed considering converted P-waves, S-waves, and all the associated multiples. We carried out the estimation of the thin-bed parameters in the frequency (amplitude spectrum) domain using simulated annealing. In contrast to using zero-offset data, the use of AVA data contributes to increase the robustness of this inverse problem under noisy conditions, as well as to significantly reduce its inherent nonuniqueness. To further reduce the nonuniqueness, and as a means to incorporate a priori geologic or geophysical information (e.g., well-log data), we imposed appropriate bounding constraints to the parameters of the media lying above and below the thin bed, which need not be known accurately. We tested the method by inverting noisy synthetic gathers corresponding to simple wedge models. In addition, we stochastically estimated the uncertainty of the solutions by inverting different data sets that share the same model parameters but are contaminated with different noise realizations. The results suggest that thin beds can be characterized fully with a moderate to high degree of confidence below tuning, even when using an approximate wavelet spectrum.


Author(s):  
Michael Bostock ◽  
Alexandre Plourde ◽  
Doriane Drolet ◽  
Geena Littel

ABSTRACT High-resolution earthquake locations and structural inversions using body waves rely on precise delay-time measurements. Subsample accuracy can be realized for P waves using multichannel cross correlation (MCCC), as developed by VanDecar and Crosson (1990), which exploits redundancy in pairwise cross correlations to determine delays between similar waveforms in studies of mantle structure using teleseismic sources (common source and multiple stations) and regional studies of structure and seismicity (multiple sources and common station). For regional S waves, alignment is complicated by the additional degree of freedom in waveform polarity that is expressed for sources with different moment tensors. Here, we recast MCCC within a principal component framework and demonstrate the equivalence between maximizing waveform correlation and minimization of various singular value–based objective functions for P waves. The singular-value framework is more general and leads naturally to an MCCC linear system for S waves that possesses an order of magnitude greater redundancy than that for P waves. Robust L1 solution of the system provides an effective means of mitigating outliers at the expense of subsample precision. Residual time shifts associated with higher-order singular vectors are employed in an iterative adaptive alignment that achieves subsample resolution. We demonstrate application of the approach on a seismicity cluster within the northern Cascadia crustal fore-arc.


Geophysics ◽  
1980 ◽  
Vol 45 (9) ◽  
pp. 1373-1411 ◽  
Author(s):  
C. C. Lash

Evidence that shear (S) waves are much more important in seismic surveys than currently believed was found in each of two deep well tests conducted some time ago. Wave tests were recorded along vertical lines, following procedures which are now designated “vertical seismic profiling.” The results may be divided into (1) evidence that shear (S) waves are produced by in‐hole dynamite charges and by the resulting compressional (P) waves, and (2) evidence that the S‐waves subsequently produce P‐waves. The proof of S‐wave production is quite conclusive. Even if we say that only P‐waves are set up in the immediate vicinity of the shot, some S‐waves are then generated within a radius of 10 to 100 ft to form what we will call a direct or “source S wave.” Other S‐waves are set up by conversion of P‐wave energy to S‐wave energy at interfaces hundreds and thousands of feet from the dynamite charge. In contrast to the P to S conversion, the evidence for S to P conversion is less conclusive. The source S‐wave generated near the shot was found to have a long‐period character, with many cycles which are believed to be controlled by the layering near the shot. The PS converted waves, which appear later, resemble the P‐waves that produce them. The interference to primary reflections by multiple reflections and/or converted waves produces complex signals at points deep in the well which require directional discrimination to separate up‐traveling waves from down‐traveling waves.


2018 ◽  
Vol 29 ◽  
pp. 00019
Author(s):  
Katarzyna Hubicka ◽  
Jakub Sokolowski

Seismic event consists of surface waves and body waves. Due to the fact that the body waves are faster (P-waves) and more energetic (S-waves) in literature the problem of their analysis is taken more often. The most universal information that is received from the recorded wave is its moment of arrival. When this information is obtained from at least four seismometers in different locations, the epicentre of the particular event can be estimated [1]. Since the recorded body waves may overlap in signal, the problem of wave onset moment is considered more often for faster P-wave than S-wave. This however does not mean that the issue of S-wave arrival time is not taken at all. As the process of manual picking is time-consuming, methods of automatic detection are recommended (these however may be less accurate). In this paper four recently developed methods estimating S-wave arrival are compared: the method operating on empirical mode decomposition and Teager-Kaiser operator [2], the modification of STA/LTA algorithm [3], the method using a nearest neighbour-based approach [4] and the algorithm operating on characteristic of signals’ second moments. The methods will be also compared to wellknown algorithm based on the autoregressive model [5]. The algorithms will be tested in terms of their S-wave arrival identification accuracy on real data originating from International Research Institutions for Seismology (IRIS) database.


1974 ◽  
Vol 64 (6) ◽  
pp. 1621-1627 ◽  
Author(s):  
J. C. Savage

abstract A comprehensive set of body-wave spectra has been calculated for the Haskell fault model generalized to a circular fault surface. These spectra are used to show that in practice the P-wave corner frequency (ƒp) may exceed the S-wave corner frequency (ƒs) when near-sonic or transonic rupture propagation obtains. The explanation appears to be that in such cases ƒs is so large that it is not identified within the recorded band, but rather a secondary corner is mistaken for ƒs. As a consequence of failing to detect the true asymptotic trend, the high-frequency falloff of the spectrum with frequency is substantially less for S waves than for P waves. This explanation appears to be consistent with the demonstration by Molnar, Tucker, and Brune (1973) that ƒp may exceed ƒs.


1961 ◽  
Vol 51 (2) ◽  
pp. 277-292
Author(s):  
William Stauder ◽  
Adams W. M.

Abstract Graphical and analytical techniques for using S-waves in focal mechanism studies are compared. In previous applications the analytical technique has shown little or no agreement with the results of fault-plane solutions from P-waves, whereas for other groups of earthquakes the graphical methods have shown good agreement between the S-waves and the P-wave solutions. It is shown that the graphical and analytical techniques are identical in principle and that when the graphical methods are applied to the same three earthquakes to which the analytical technique had been applied the identical results are obtained. Closer examination of the graphical presentation of the data, however, shows that the disagreement between the S-waves and the fault plane solutions from P is largely apparent. The discrepancy follows upon the peculiar scatter in the S-wave data and the chance occurrence of observations of S at stations located along closely parallel planes of polarization of S. Once this is understood, it is seen that the direction of polarization of S-waves is in substantial agreement with the methods of analysis of focal mechanisms from P-waves, and that the data are consistent with a simple dipole as the point model of the earthquake focus.


Sign in / Sign up

Export Citation Format

Share Document