Effects of randomly orienting penny-shaped cracks on the elastic properties of transversely isotropic rocks

Geophysics ◽  
2020 ◽  
Vol 85 (6) ◽  
pp. MR325-MR340 ◽  
Author(s):  
Denghui Xu ◽  
Tongcheng Han ◽  
Shengbiao Liu ◽  
Li-Yun Fu

Fractured reservoirs, as one kind of unconventional reservoirs, have great potential for oil and gas development, and their accurate characterization requires the development of rock-physics models that better simulate real fractured rocks. However, current models focus mainly on the elastic properties of rocks with aligned cracks, while the effects of randomly orienting cracks in transversely isotropic (TI) rocks are poorly studied even though such conditions are frequently encountered in the earth. To address this problem, we have derived models for the elastic properties of rocks with a TI background permeated by 3D inclined cracks and randomly orienting cracks. Then, based on the developed models, we comprehensively study the effects of the two inclination angles (i.e., the dip angle between the cracks and the isotropic plane and the rotation angle between the cracks and the plane normal to the isotropic plane, respectively) of 3D inclined cracks on the elastic properties of TI rocks. We determine that the two angles have significant influences on the elastic coefficients and hence the elastic velocities, and that their influences on the elastic properties are varying in different directions. We further investigate the effects of crack density and aspect ratio of randomly orienting cracks on the elastic properties of the fractured rocks with a TI background. The results show that the increasing crack density and crack aspect ratio reduce the elastic coefficients and velocities for rocks with randomly orienting cracks, in which the relations between compressional-wave velocities and the crack properties (i.e., crack density and crack aspect ratio) are obtained to aid the interpretation of the acquired acoustic exploration data. The proposed new models can greatly improve the modeling capability for the elastic properties of rocks with a TI background permeated by inclined and randomly orienting cracks.

Geophysics ◽  
2002 ◽  
Vol 67 (3) ◽  
pp. 711-726 ◽  
Author(s):  
Feng Shen ◽  
Xiang Zhu ◽  
M. Nafi Toksöz

This paper attempts to explain the relationships between fractured medium properties and seismic signatures and distortions induced by geology‐related influences on azimuthal AVO responses. In the presence of vertically aligned fractures, the relationships between fracture parameters (fracture density, fracture aspect ratio, and saturated fluid content) and their seismic signatures are linked with rock physics models of fractured media. The P‐wave seismic signatures studied in this paper include anisotropic parameters (δ(v), (v), and γ(v)), NMO velocities, and azimuthal AVO responses, where δ(v) is responsible for near‐vertical P‐wave velocity variations, (v) defines P‐wave anisotropy, and γ(v) governs the degree of shearwave splitting. The results show that in gas‐saturated fractures, anisotropic parameters δ(v) and (v) vary with fracture density alone. However, in water‐saturated fractures δ(v) and (v) depend on fracture density and crack aspect ratio and are also related to Vp/VS and Vp of background rocks, respectively. Differing from δ(v) and (v), γ(v) is the parameter most related to crack density. It is insensitive to the saturated fluid content and crack aspect ratio. The P‐wave NMO velocities in horizontally layered media are a function of δ(v), and their properties are comparable with those of δ(v). Results from 3‐D finite‐difference modeling show that P‐wave azimuthal AVO variations do not necessarily correlate with the magnitude of fracture density. Our studies reveal that, in addition to Poisson's ratio, other elastic properties of background rocks have an effect on P‐wave azimuthal AVO variations. Varying the saturated fluid content of fractures can lead to azimuthal AVO variations and may greatly change azimuthal AVO responses. For a thin fractured reservoir, a tuning effect related to seismic wavelength and reservoir thickness can result in variations in AVO gradients and in azimuthal AVO variations. Results from instantaneous frequency and instantaneous bandwidth indicate that tuning can also lead to azimuthal variations in the rates of changes of the phase and amplitude of seismic waves. For very thin fractured reservoirs, the effect of tuning could become dominant. Our numerical results show that AVO gradients may be significantly distorted in the presence of overburden anisotropy, which suggests that the inversion of fracture parameters based on an individual AVO response would be biased unless this influence were corrected. Though P‐wave azimuthal AVO variations could be useful for fracture detection, the combination of other types of data is more beneficial than using P‐wave amplitude signatures alone, especially for the quantitative characterization of a fractured reservoir.


Geophysics ◽  
2002 ◽  
Vol 67 (1) ◽  
pp. 292-299 ◽  
Author(s):  
Andrey Bakulin ◽  
Vladimir Grechka ◽  
Ilya Tsvankin

Characterization of naturally fractured reservoirs often requires estimating parameters of multiple fracture sets that develop in an anisotropic background. Here, we discuss modeling and inversion of the effective parameters of orthorhombic models formed by two orthogonal vertical fracture sets embedded in a VTI (transversely isotropic with a vertical symmetry axis) background matrix. Although the number of the microstructural (physical) medium parameters is equal to the number of effective stiffness elements (nine), we show that for this model there is an additional relation (constraint) between the stiffnesses or Tsvankin's anisotropic coefficients. As a result, the same effective orthorhombic medium can be produced by a wide range of equivalent models with vastly different fracture weaknesses and background VTI parameters, and the inversion of seismic data for the microstructural parameters is nonunique without additional information. Reflection moveout of PP‐ and PS‐waves can still be used to find the fracture orientation and estimate (in combination with the vertical velocities) the differences between the normal and shear weaknesses of the fracture sets, as well as the background anellipticity parameter ηb. Since for penny‐shaped cracks the shear weakness is close to twice the crack density, seismic data can help to identify the dominant fracture set, although the crack densities cannot be resolved individually. If the VTI symmetry of the background is caused by intrinsic anisotropy (as is usually the case for shales), it may be possible to determine at least one background anisotropic coefficient from borehole or core measurements. Then seismic data can be inverted for the fracture weaknesses and the rest of the background parameters. Therefore, seismic characterization of reservoirs with multiple fracture sets and anisotropic background is expected to give ambiguous results, unless the input data include measurements made on different scales (surface seismic, borehole, cores).


2018 ◽  
Vol 36 (4) ◽  
pp. 1
Author(s):  
Caio Leandro Perdigão Castro ◽  
José Jadsom Sampaio de Figueiredo ◽  
Isadora Augusta Soares de Macedo

ABSTRACT. Estimating the elastic properties of the rocks in the subsurface is a task with many challenges. The main goal of this work is to estimate the Thomsen anisotropic parameters from the inversion of elastic stiffness coefficients using data from five wells of the Norne Field, located at Norway. We compare the results of these parameters with the Backus average, using Li’s empirical method. Further, aspect ratio and crack density are calculated from the results of the elastic stiffness coefficients. It is considered a transversely isotropic medium. The results from the two methods showed similarities in estimating anisotropic parameters, aspect ratio and fracture density. The anisotropy of the study area is weak with some regions with moderate anisotropy. Some patterns suggest the possibility of calculating the anisotropic parameters for the adjacent wells and interpolate values for use in seismic processing.Keywords: Transversally isotropic medium, well logs, Thomsen parameters, Backus AverageRESUMO. Estimar as propriedades elásticas das rochas em subsurperfície é uma tarefa com muitos desafios. O principal objetivo deste trabalho é estimar os parâmetros de anisotropia de Thomsen a partir da inversão dos coeficientes de rigidez elástica, utilizando dados de cinco diferentes poços do campo de Norne, localizado na Noruega. Comparamos os resultados obtidos para esses parâmetros com a média de Backus, usando o método empírico de Li. Em seguida, a razão de aspecto e a densidade de fratura foram calculadas a partir dos resultados dos coeficientes de rigidez elástica. O meio transversalmente isotrópico é considerado neste trabalho. Os resultados obtidos a partir dos dois métodos mostraram similaridades na estimativa dos parâmetros de anisotropia, razão de aspecto e densidade de fratura. A anisotropia da área de estudo é fraca com algumas regiões de anisotropia moderada. Alguns padrões encontrados sugerem a possibilidade de calcular os parâmetros de anisotropia para os poços vizinhos e interpolá-los para uso futuro no processamento sísmico.Palavras-chave: Meios transversalmente isotrópicos, perfis de poços, parâmetros de Thomsen, média de Backus 1UFPA,


2021 ◽  
Vol 153 ◽  
pp. 103665
Author(s):  
K. Du ◽  
L. Cheng ◽  
J.F. Barthélémy ◽  
I. Sevostianov ◽  
A. Giraud ◽  
...  

Geophysics ◽  
2011 ◽  
Vol 76 (3) ◽  
pp. WA147-WA155 ◽  
Author(s):  
Marina Pervukhina ◽  
Boris Gurevich ◽  
Pavel Golodoniuc ◽  
David N. Dewhurst

Stress dependency and anisotropy of dynamic elastic properties of shales is important for a number of geophysical applications, including seismic interpretation, fluid identification, and 4D seismic monitoring. Using Sayers-Kachanov formalism, we developed a new model for transversely isotropic (TI) media that describes stress sensitivity behavior of all five elastic coefficients using four physically meaningful parameters. The model is used to parameterize elastic properties of about 20 shales obtained from laboratory measurements and the literature. The four fitting parameters, namely, specific tangential compliance of a single crack, ratio of normal to tangential compliances, characteristic pressure, and crack orientation anisotropy parameter, show moderate to good correlations with the depth from which the shale was extracted. With increasing depth, the tangential compliance exponentially decreases. The crack orientation anisotropy parameter broadly increases with depth for most of the shales, indicating that cracks are getting more aligned in the bedding plane. The ratio of normal to shear compliance and characteristic pressure decreases with depth to 2500 m and then increases below this to 3600 m. The suggested model allows us to evaluate the stress dependency of all five elastic compliances of a TI medium, even if only some of them are known. This may allow the reconstruction of the stress dependency of all five elastic compliances of a shale from log data, for example.


2019 ◽  
Vol 208 ◽  
pp. 33-44 ◽  
Author(s):  
Xiude Lin ◽  
Hanxing Zhu ◽  
Xiaoli Yuan ◽  
Zuobin Wang ◽  
Stephane Bordas

Author(s):  
Eirik Keilegavlen ◽  
Runar Berge ◽  
Alessio Fumagalli ◽  
Michele Starnoni ◽  
Ivar Stefansson ◽  
...  

Abstract Development of models and dedicated numerical methods for dynamics in fractured rocks is an active research field, with research moving towards increasingly advanced process couplings and complex fracture networks. The inclusion of coupled processes in simulation models is challenged by the high aspect ratio of the fractures, the complex geometry of fracture networks, and the crucial impact of processes that completely change characteristics on the fracture-rock interface. This paper provides a general discussion of design principles for introducing fractures in simulators, and defines a framework for integrated modeling, discretization, and computer implementation. The framework is implemented in the open-source simulation software PorePy, which can serve as a flexible prototyping tool for multiphysics problems in fractured rocks. Based on a representation of the fractures and their intersections as lower-dimensional objects, we discuss data structures for mixed-dimensional grids, formulation of multiphysics problems, and discretizations that utilize existing software. We further present a Python implementation of these concepts in the PorePy open-source software tool, which is aimed at coupled simulation of flow and transport in three-dimensional fractured reservoirs as well as deformation of fractures and the reservoir in general. We present validation by benchmarks for flow, poroelasticity, and fracture deformation in porous media. The flexibility of the framework is then illustrated by simulations of non-linearly coupled flow and transport and of injection-driven deformation of fractures. All results can be reproduced by openly available simulation scripts.


Sign in / Sign up

Export Citation Format

Share Document