scholarly journals COMPARING TWO APPROACHES ON THE ESTIMATIVE ANISOTROPIC PARAMETERSFROM WELL LOGS: AN APPLICATION ON THE NORNE FIELD DATASET

2018 ◽  
Vol 36 (4) ◽  
pp. 1
Author(s):  
Caio Leandro Perdigão Castro ◽  
José Jadsom Sampaio de Figueiredo ◽  
Isadora Augusta Soares de Macedo

ABSTRACT. Estimating the elastic properties of the rocks in the subsurface is a task with many challenges. The main goal of this work is to estimate the Thomsen anisotropic parameters from the inversion of elastic stiffness coefficients using data from five wells of the Norne Field, located at Norway. We compare the results of these parameters with the Backus average, using Li’s empirical method. Further, aspect ratio and crack density are calculated from the results of the elastic stiffness coefficients. It is considered a transversely isotropic medium. The results from the two methods showed similarities in estimating anisotropic parameters, aspect ratio and fracture density. The anisotropy of the study area is weak with some regions with moderate anisotropy. Some patterns suggest the possibility of calculating the anisotropic parameters for the adjacent wells and interpolate values for use in seismic processing.Keywords: Transversally isotropic medium, well logs, Thomsen parameters, Backus AverageRESUMO. Estimar as propriedades elásticas das rochas em subsurperfície é uma tarefa com muitos desafios. O principal objetivo deste trabalho é estimar os parâmetros de anisotropia de Thomsen a partir da inversão dos coeficientes de rigidez elástica, utilizando dados de cinco diferentes poços do campo de Norne, localizado na Noruega. Comparamos os resultados obtidos para esses parâmetros com a média de Backus, usando o método empírico de Li. Em seguida, a razão de aspecto e a densidade de fratura foram calculadas a partir dos resultados dos coeficientes de rigidez elástica. O meio transversalmente isotrópico é considerado neste trabalho. Os resultados obtidos a partir dos dois métodos mostraram similaridades na estimativa dos parâmetros de anisotropia, razão de aspecto e densidade de fratura. A anisotropia da área de estudo é fraca com algumas regiões de anisotropia moderada. Alguns padrões encontrados sugerem a possibilidade de calcular os parâmetros de anisotropia para os poços vizinhos e interpolá-los para uso futuro no processamento sísmico.Palavras-chave: Meios transversalmente isotrópicos, perfis de poços, parâmetros de Thomsen, média de Backus 1UFPA,

Geophysics ◽  
1999 ◽  
Vol 64 (4) ◽  
pp. 1143-1152 ◽  
Author(s):  
Ivan A. Simões‐Filho ◽  
Fernando A. Neves ◽  
Júlio S. Tinen ◽  
João S. Protázio ◽  
Jessé C. Costa

We present a method for the exact modeling and inversion of multiazimuthal qP-wave reflection coefficients at an interface separating two anisotropic media. This procedure can be used for media with at least one of its planes of symmetry parallel to the interface (i.e., monoclinic or higher symmetries). To illustrate the method, we compute qP-wave reflection coefficients at an interface separating an isotropic medium (representing a seal rock) from a transversely isotropic medium (representing a reservoir rock with vertical aligned fractures). Forward modeling shows that the difference in the offset of the critical angles for different azimuths is proportional to the fracture density: the higher the fracture density, the larger the difference. In the second part of the paper, we use a global optimization technique (genetic algorithm) to invert wide‐angle amplitude variation with offset (AVO) synthetic data. The model space consists of mass density and five elastic parameters of a transversely isotropic medium with a horizontal symmetry axis (HTI medium), which, to the first order, represents the fractured reservoir rock. For this model, we find that the configuration of three azimuths of data acquisition is the minimum number of acquisition planes needed to invert amplitude variation with offset/amplitude variation with azimuth (AVO/AVA) data. Further, there is a need for incidence angles up to 40°; a more narrow range of angles can lead to models that fit the data perfectly only up to the “maximum” incidence angle. We assume that the velocities and density of the isotropic rock are known, but use no prior information on the values of the model space parameters of the fractured rock except for reasonable velocity values in crustal rocks and constraints of elastic stability of solid media. After inversion for the model space parameters, we compute statistics of the 30 best models and likelihood functions, which provide information on the nonuniqueness and quality of the AVO/AVA inverse problem.


Geophysics ◽  
2002 ◽  
Vol 67 (3) ◽  
pp. 711-726 ◽  
Author(s):  
Feng Shen ◽  
Xiang Zhu ◽  
M. Nafi Toksöz

This paper attempts to explain the relationships between fractured medium properties and seismic signatures and distortions induced by geology‐related influences on azimuthal AVO responses. In the presence of vertically aligned fractures, the relationships between fracture parameters (fracture density, fracture aspect ratio, and saturated fluid content) and their seismic signatures are linked with rock physics models of fractured media. The P‐wave seismic signatures studied in this paper include anisotropic parameters (δ(v), (v), and γ(v)), NMO velocities, and azimuthal AVO responses, where δ(v) is responsible for near‐vertical P‐wave velocity variations, (v) defines P‐wave anisotropy, and γ(v) governs the degree of shearwave splitting. The results show that in gas‐saturated fractures, anisotropic parameters δ(v) and (v) vary with fracture density alone. However, in water‐saturated fractures δ(v) and (v) depend on fracture density and crack aspect ratio and are also related to Vp/VS and Vp of background rocks, respectively. Differing from δ(v) and (v), γ(v) is the parameter most related to crack density. It is insensitive to the saturated fluid content and crack aspect ratio. The P‐wave NMO velocities in horizontally layered media are a function of δ(v), and their properties are comparable with those of δ(v). Results from 3‐D finite‐difference modeling show that P‐wave azimuthal AVO variations do not necessarily correlate with the magnitude of fracture density. Our studies reveal that, in addition to Poisson's ratio, other elastic properties of background rocks have an effect on P‐wave azimuthal AVO variations. Varying the saturated fluid content of fractures can lead to azimuthal AVO variations and may greatly change azimuthal AVO responses. For a thin fractured reservoir, a tuning effect related to seismic wavelength and reservoir thickness can result in variations in AVO gradients and in azimuthal AVO variations. Results from instantaneous frequency and instantaneous bandwidth indicate that tuning can also lead to azimuthal variations in the rates of changes of the phase and amplitude of seismic waves. For very thin fractured reservoirs, the effect of tuning could become dominant. Our numerical results show that AVO gradients may be significantly distorted in the presence of overburden anisotropy, which suggests that the inversion of fracture parameters based on an individual AVO response would be biased unless this influence were corrected. Though P‐wave azimuthal AVO variations could be useful for fracture detection, the combination of other types of data is more beneficial than using P‐wave amplitude signatures alone, especially for the quantitative characterization of a fractured reservoir.


Geophysics ◽  
2020 ◽  
Vol 85 (6) ◽  
pp. MR325-MR340 ◽  
Author(s):  
Denghui Xu ◽  
Tongcheng Han ◽  
Shengbiao Liu ◽  
Li-Yun Fu

Fractured reservoirs, as one kind of unconventional reservoirs, have great potential for oil and gas development, and their accurate characterization requires the development of rock-physics models that better simulate real fractured rocks. However, current models focus mainly on the elastic properties of rocks with aligned cracks, while the effects of randomly orienting cracks in transversely isotropic (TI) rocks are poorly studied even though such conditions are frequently encountered in the earth. To address this problem, we have derived models for the elastic properties of rocks with a TI background permeated by 3D inclined cracks and randomly orienting cracks. Then, based on the developed models, we comprehensively study the effects of the two inclination angles (i.e., the dip angle between the cracks and the isotropic plane and the rotation angle between the cracks and the plane normal to the isotropic plane, respectively) of 3D inclined cracks on the elastic properties of TI rocks. We determine that the two angles have significant influences on the elastic coefficients and hence the elastic velocities, and that their influences on the elastic properties are varying in different directions. We further investigate the effects of crack density and aspect ratio of randomly orienting cracks on the elastic properties of the fractured rocks with a TI background. The results show that the increasing crack density and crack aspect ratio reduce the elastic coefficients and velocities for rocks with randomly orienting cracks, in which the relations between compressional-wave velocities and the crack properties (i.e., crack density and crack aspect ratio) are obtained to aid the interpretation of the acquired acoustic exploration data. The proposed new models can greatly improve the modeling capability for the elastic properties of rocks with a TI background permeated by inclined and randomly orienting cracks.


2016 ◽  
Vol 4 (3) ◽  
pp. T359-T372 ◽  
Author(s):  
Clotilde Chen Valdes ◽  
Aderonke Aderibigbe ◽  
Zoya Heidari

The evaluation of rock mechanical properties in organic-rich mudrocks is challenging because of their heterogeneity, anisotropy, and complex lithology. Hence, geomechanical analysis should include a complete definition of the anisotropic elastic stiffness coefficients for stress prediction. Furthermore, typical assumptions made for poroelastic parameters, such as assuming that Biot’s parameter is equal to one, can result in unreliable geomechanical evaluation for stress prediction and failure in completion design. Our objectives included estimating (1) anisotropic elastic properties and (2) anisotropic poroelastic parameters and minimum horizontal stresses, using laboratory measurements and well logs, in organic-rich mudrocks with different levels of mechanical anisotropy and vertical heterogeneity. We have performed mechanical tests on core plugs and obtained correlations between the dynamic and static elastic stiffness coefficients. We have analyzed advanced acoustic well logs, as well as laboratory geomechanical measurements, to estimate dynamic elastic stiffness coefficients of the formations under investigation. The estimates of mineral composition, in conjunction with the estimates of elastic stiffness coefficients, yielded the anisotropic poroelastic parameters. Finally, we have estimated the stress profile under the assumption of transverse isotropy. We have quantified the impact of anisotropic elastic rock properties and poroelastic parameters on stress prediction in the lower Eagle Ford, Haynesville, and upper Wolfcamp Formations. The estimated minimum horizontal stress gradient, assuming anisotropic elastic properties and anisotropic poroelastic parameters, varied by approximately 30% (relative difference) compared with the case in which these parameters were assumed to be equal to one. This variation decreased to approximately 15% and 6% when the poroelastic parameters were assumed to be equal to 0.7 in formations with high and relatively low levels of heterogeneity and mechanical anisotropy, respectively. The results confirmed that transversely isotropic media require a thorough depth-by-depth estimation of anisotropic poroelastic parameters to estimate stress profile accurately. We have also determined the importance of integrated interpretation of petrophysical, compositional, and mechanical properties in geomechanical evaluation in organic-rich mudrocks.


2021 ◽  
Author(s):  
Thomas Alcock ◽  
Sergio Vinciguerra ◽  
Phillip Benson ◽  
Federico Vagnon

<p>Stromboli volcano has experienced four sector collapses over the past 13 thousand years, resulting in the formation of the Sciara del Fuoco (SDF) horseshoe-shaped depression and an inferred NE / SW striking rift zone across the SDF and the western sector of the island. These events have resulted in the formation of steep depressions on the slopes on the volcano where episodes of instability are continuously being observed and recorded. This study aims to quantify the fracture density inside and outside the rift zone to identify potential damaged zones that could reduce the edifice strength and promote fracturing. In order to do so we have carried out a multiscale analysis, by integrating satellite observations, field work and seismic and electrical resistivity analyses on cm scales blocks belonging to 11 lava units from the main volcanic cycles that have built the volcano edifice, ie. Paleostromboli, Nestromboli and Vancori. 0.5 m resolution Pleiades satellite data has been first used to highlight 23635 distinct linear features across the island. Fracture density has been calculated using Fracpaq based on the Mauldon et al (2001) method to determine the average fracture density of a given area on the basis of the average length of drawn segments within a predetermined circular area. 41.8 % of total fracture density is found around intrusions and fissures, with the summit area and the slopes of SDF having the highest average fracture density of 5.279  . Density, porosity, P- wave velocity in dry and wet conditions and electrical resistivity (in wet conditions) were measured  via an ultrasonic pulse generator and acquisition system (Pundit) and an on purpose built measuring quadrupole on cm scale blocks of lavas collected from both within and outside the proposed rift zone to assess the physical state and the crack damage of the different lava units.  Preliminary results show that P-wave velocity between ~ 2.25 km/s < Vp < 5km/s decreases with porosity while there is high variability electrical resistivity with 21.7 < ρ < 590 Ohm * m. This is presumably due to the lavas texture and the variable content of bubble/vesicles porosity and crack damage, that is reflected by an effective overall porosity between 0 and 9 %. Higher porosity is generally mirrored by lower p-wave velocity values. Neostromboli blocks show the most variability in both P-wave velocity and electrical resistivity. Further work will assess crack density throughout optical analyses and systematically investigate the UCS and elastic moduli. This integrated approach is expected to provide a multiscale fracture density and allow to develop further laboratory testing on how slip surfaces can evolve to a flank collapse at Stromboli.</p>


1984 ◽  
Vol 51 (4) ◽  
pp. 811-815 ◽  
Author(s):  
Y. M. Tsai

The stress distribution produced by the identation of a penny-shaped crack by an oblate smooth spheroidal rigid inclusion in a transversely isotropic medium is investigated using the method of Hankel transforms. This three-part mixed boundary value problem is solved using the techniques of triple integral equations. The normal contact stress between the crack surface and the indenter is written as the product of the associated half-space contact stress and a nondimensional crack-effect correction function. An exact expression for the stress-intensity is obtained as the product of a dimensional quantity and a nondimensional function. The curves for these nondimensional functions are presented and used to determine the values of the normalized stress-intensity factor and the normalized maximum contact stress. The stress-intensity factor is shown to be dependent on the material constants and increasing with increasing indentation. The stress-intensity factor also increases if the radius of curvature of the indenter surface increases.


Sign in / Sign up

Export Citation Format

Share Document